Sulforaphane Suppresses Hepatitis C Virus Replication by Up-Regulating Heme Oxygenase-1 Expression through PI3K/Nrf2 Pathway

Hepatitis C virus (HCV) infection-induced oxidative stress is a major risk factor for the development of HCV-associated liver disease. Sulforaphane (SFN) is an antioxidant phytocompound that acts against cellular oxidative stress and tumorigenesis. However, there is little known about its anti-viral...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 11; no. 3; p. e0152236
Main Authors Yu, Jung-Sheng, Chen, Wei-Chun, Tseng, Chin-Kai, Lin, Chun-Kuang, Hsu, Yao-Chin, Chen, Yen-Hsu, Lee, Jin-Ching
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 29.03.2016
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hepatitis C virus (HCV) infection-induced oxidative stress is a major risk factor for the development of HCV-associated liver disease. Sulforaphane (SFN) is an antioxidant phytocompound that acts against cellular oxidative stress and tumorigenesis. However, there is little known about its anti-viral activity. In this study, we demonstrated that SFN significantly suppressed HCV protein and RNA levels in HCV replicon cells and infectious system, with an IC50 value of 5.7 ± 0.2 μM. Moreover, combination of SFN with anti-viral drugs displayed synergistic effects in the suppression of HCV replication. In addition, we found nuclear factor erythroid 2-related factor 2 (Nrf2)/HO-1 induction in response to SFN and determined the signaling pathways involved in this process, including inhibition of NS3 protease activity and induction of IFN response. In contrast, the anti-viral activities were attenuated by knockdown of HO-1 with specific inhibitor (SnPP) and shRNA, suggesting that anti-HCV activity of SFN is dependent on HO-1 expression. Otherwise, SFN stimulated the phosphorylation of phosphoinositide 3-kinase (PI3K) leading Nrf2-mediated HO-1 expression against HCV replication. Overall, our results indicated that HO-1 is essential in SFN-mediated anti-HCV activity and provide new insights in the molecular mechanism of SFN in HCV replication.
Bibliography:Conceived and designed the experiments: JSY WCC YHC JCL. Performed the experiments: JSY WCC CKT CKL. Analyzed the data: JSY YCH WCC CKT CKL. Contributed reagents/materials/analysis tools: YCH YHC JCL. Wrote the paper: JSY WCC YHC JCL.
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0152236