Urinary Collagen Fragments Are Significantly Altered in Diabetes: A Link to Pathophysiology

The pathogenesis of diabetes mellitus (DM) is variable, comprising different inflammatory and immune responses. Proteome analysis holds the promise of delivering insight into the pathophysiological changes associated with diabetes. Recently, we identified and validated urinary proteomics biomarkers...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 5; no. 9; p. e13051
Main Authors Maahs, David M., Siwy, Justyna, Argilés, Àngel, Cerna, Marie, Delles, Christian, Dominiczak, Anna F., Gayrard, Nathalie, Iphöfer, Alexander, Jänsch, Lothar, Jerums, George, Medek, Karel, Mischak, Harald, Navis, Gerjan J., Roob, Johannes M., Rossing, Kasper, Rossing, Peter, Rychlík, Ivan, Schiffer, Eric, Schmieder, Roland E., Wascher, Thomas C., Winklhofer-Roob, Brigitte M., Zimmerli, Lukas U., Zürbig, Petra, Snell-Bergeon, Janet K.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 28.09.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0013051

Cover

More Information
Summary:The pathogenesis of diabetes mellitus (DM) is variable, comprising different inflammatory and immune responses. Proteome analysis holds the promise of delivering insight into the pathophysiological changes associated with diabetes. Recently, we identified and validated urinary proteomics biomarkers for diabetes. Based on these initial findings, we aimed to further validate urinary proteomics biomarkers specific for diabetes in general, and particularity associated with either type 1 (T1D) or type 2 diabetes (T2D). Therefore, the low-molecular-weight urinary proteome of 902 subjects from 10 different centers, 315 controls and 587 patients with T1D (n = 299) or T2D (n = 288), was analyzed using capillary-electrophoresis mass-spectrometry. The 261 urinary biomarkers (100 were sequenced) previously discovered in 205 subjects were validated in an additional 697 subjects to distinguish DM subjects (n = 382) from control subjects (n = 315) with 94% (95% CI: 92-95) accuracy in this study. To identify biomarkers that differentiate T1D from T2D, a subset of normoalbuminuric patients with T1D (n = 68) and T2D (n = 42) was employed, enabling identification of 131 biomarker candidates (40 were sequenced) differentially regulated between T1D and T2D. These biomarkers distinguished T1D from T2D in an independent validation set of normoalbuminuric patients (n = 108) with 88% (95% CI: 81-94%) accuracy, and in patients with impaired renal function (n = 369) with 85% (95% CI: 81-88%) accuracy. Specific collagen fragments were associated with diabetes and type of diabetes indicating changes in collagen turnover and extracellular matrix as one hallmark of the molecular pathophysiology of diabetes. Additional biomarkers including inflammatory processes and pro-thrombotic alterations were observed. These findings, based on the largest proteomic study performed to date on subjects with DM, validate the previously described biomarkers for DM, and pinpoint differences in the urinary proteome of T1D and T2D, indicating significant differences in extracellular matrix remodeling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Conceived and designed the experiments: DMM JS ÀA MC CD AFD NG AI LJ GJ KM HM GN JMR KR PR IR ES RES TCW BMWR LUZ PZ JKSB. Performed the experiments: JS HM ES PZ. Analyzed the data: JS ES PZ. Contributed reagents/materials/analysis tools: HM. Wrote the paper: DMM JS ÀA MC CD AFD NG AI LJ GJ KM HM GN JMR KR PR IR ES RES TCW BMWR LUZ PZ JKSB.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0013051