The molecular subtype classification is a determinant of sentinel node positivity in early breast carcinoma

Several authors have underscored a strong relation between the molecular subtypes and the axillary status of breast cancer patients. The aim of our work was to decipher the interaction between this classification and the probability of a positive sentinel node biopsy. Our dataset consisted of a tota...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 6; no. 5; p. e20297
Main Authors Reyal, Fabien, Rouzier, Roman, Depont-Hazelzet, Berenice, Bollet, Marc A, Pierga, Jean-Yves, Alran, Severine, Salmon, Remy J, Fourchotte, Virginie, Vincent-Salomon, Anne, Sastre-Garau, Xavier, Antoine, Martine, Uzan, Serge, Sigal-Zafrani, Brigitte, De Rycke, Yann
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 31.05.2011
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Several authors have underscored a strong relation between the molecular subtypes and the axillary status of breast cancer patients. The aim of our work was to decipher the interaction between this classification and the probability of a positive sentinel node biopsy. Our dataset consisted of a total number of 2654 early-stage breast cancer patients. Patients treated at first by conservative breast surgery plus sentinel node biopsies were selected. A multivariate logistic regression model was trained and validated. Interaction covariate between ER and HER2 markers was a forced input of this model. The performance of the multivariate model in the training and the two validation sets was analyzed in terms of discrimination and calibration. Probability of axillary metastasis was detailed for each molecular subtype. The interaction covariate between ER and HER2 status was a stronger predictor (p = 0.0031) of positive sentinel node biopsy than the ER status by itself (p = 0.016). A multivariate model to determine the probability of sentinel node positivity was defined with the following variables; tumour size, lympho-vascular invasion, molecular subtypes and age at diagnosis. This model showed similar results in terms of discrimination (AUC = 0.72/0.73/0.72) and calibration (HL p = 0.28/0.05/0.11) in the training and validation sets. The interaction between molecular subtypes, tumour size and sentinel nodes status was approximated. We showed that biologically-driven analyses are able to build new models with higher performance in terms of breast cancer axillary status prediction. The molecular subtype classification strongly interacts with the axillary and distant metastasis process.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: FR RR MAB YDR. Performed the experiments: FR RR MAB YDR BD-H. Analyzed the data: FR RR MAB YDR BD-H J-YP SA RJS VF AV-S XS-G MA SU BS-Z. Contributed reagents/materials/analysis tools: FR RR MAB YDR BD-H J-YP SA RJS VF AV-S XS-G MA SU BS-Z. Wrote the paper: FR RR MAB YDR BS-Z.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0020297