Elite suppressor-derived HIV-1 envelope glycoproteins exhibit reduced entry efficiency and kinetics

Elite suppressors (ES) are a rare subset of HIV-1-infected individuals who are able to maintain HIV-1 viral loads below the limit of detection by ultra-sensitive clinical assays in the absence of antiretroviral therapy. Mechanism(s) responsible for this elite control are poorly understood but likely...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 5; no. 4; p. e1000377
Main Authors Lassen, Kara G, Lobritz, Michael A, Bailey, Justin R, Johnston, Samantha, Nguyen, Sandra, Lee, Benhur, Chou, Tom, Siliciano, Robert F, Markowitz, Martin, Arts, Eric J
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.04.2009
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Elite suppressors (ES) are a rare subset of HIV-1-infected individuals who are able to maintain HIV-1 viral loads below the limit of detection by ultra-sensitive clinical assays in the absence of antiretroviral therapy. Mechanism(s) responsible for this elite control are poorly understood but likely involve both host and viral factors. This study assesses ES plasma-derived envelope glycoprotein (env) fitness as a function of entry efficiency as a possible contributor to viral suppression. Fitness of virus entry was first evaluated using a novel inducible cell line with controlled surface expression levels of CD4 (receptor) and CCR5 (co-receptor). In the context of physiologic CCR5 and CD4 surface densities, ES envs exhibited significantly decreased entry efficiency relative to chronically infected viremic progressors. ES envs also demonstrated slow entry kinetics indicating the presence of virus with reduced entry fitness. Overall, ES env clones were less efficient at mediating entry than chronic progressor envs. Interestingly, acute infection envs exhibited an intermediate phenotypic pattern not distinctly different from ES or chronic progressor envs. These results imply that lower env fitness may be established early and may directly contribute to viral suppression in ES individuals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: KGL MAL. Performed the experiments: KGL MAL. Analyzed the data: KGL MAL TC. Contributed reagents/materials/analysis tools: JRB SJ SN BL RFS MM EJA. Wrote the paper: KGL MAL. Provided reagents (envs), collected and cloned all of the HIV-1 envs from elite and acute patients, involved in experimental design and prep of the manuscript: JRB. Developed and tested the cell line and Affinofile system, assisted in experimental design and determination of the levels of CCR5 and CD4 in the cell system: SJ. Developed and tested the cell line and Affinofile system, assisted in experimental design and determination of the levels of CCR5 and CD4 in the cell system: SN. Developed and tested the cell line and Affinofile system, assisted in experimental design and determination of the levels of CCR5 and CD4 in the cell system, supervised activities, helped write manuscript and guide co-authors on the use of the Affinofile system: BL. Provided reagents (envs), supervised activities and reviewed the re-write of the manuscript: RFS. Identified the appropriate acutely infected patients, provided the plasma samples for this study, and was involved in providing clinical characteristics and in writing the manuscript: MM. Manuscript preparation, experimental design, oversight and guidance on all of the experiments and figure preparation: EJA.
Current address: Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
ISSN:1553-7374
1553-7366
1553-7374
DOI:10.1371/journal.ppat.1000377