Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-CAVIN mutations
We investigated eight families with a novel subtype of congenital generalized lipodystrophy (CGL4) of whom five members had died from sudden cardiac death during their teenage years. ECG studies revealed features of long-QT syndrome, bradycardia, as well as supraventricular and ventricular tachycard...
Saved in:
Published in | PLoS genetics Vol. 6; no. 3; p. e1000874 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.03.2010
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We investigated eight families with a novel subtype of congenital generalized lipodystrophy (CGL4) of whom five members had died from sudden cardiac death during their teenage years. ECG studies revealed features of long-QT syndrome, bradycardia, as well as supraventricular and ventricular tachycardias. Further symptoms comprised myopathy with muscle rippling, skeletal as well as smooth-muscle hypertrophy, leading to impaired gastrointestinal motility and hypertrophic pyloric stenosis in some children. Additionally, we found impaired bone formation with osteopenia, osteoporosis, and atlanto-axial instability. Homozygosity mapping located the gene within 2 Mbp on chromosome 17. Prioritization of 74 candidate genes with GeneDistiller for high expression in muscle and adipocytes suggested PTRF-CAVIN (Polymerase I and transcript release factor/Cavin) as the most probable candidate leading to the detection of homozygous mutations (c.160delG, c.362dupT). PTRF-CAVIN is essential for caveolae biogenesis. These cholesterol-rich plasmalemmal vesicles are involved in signal-transduction and vesicular trafficking and reside primarily on adipocytes, myocytes, and osteoblasts. Absence of PTRF-CAVIN did not influence abundance of its binding partner caveolin-1 and caveolin-3. In patient fibroblasts, however, caveolin-1 failed to localize toward the cell surface and electron microscopy revealed reduction of caveolae to less than 3%. Transfection of full-length PTRF-CAVIN reestablished the presence of caveolae. The loss of caveolae was confirmed by Atomic Force Microscopy (AFM) in combination with fluorescent imaging. PTRF-CAVIN deficiency thus presents the phenotypic spectrum caused by a quintessential lack of functional caveolae. |
---|---|
Bibliography: | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 ObjectType-Feature-4 content type line 23 ObjectType-Report-1 ObjectType-Article-3 Conceived and designed the experiments: VS RV RB SB SS MS. Performed the experiments: RB AS BL SL MK MS. Analyzed the data: VS DS RV RB AS BL SL SB SS MS. Contributed reagents/materials/analysis tools: AR LJM DS MS. Wrote the paper: VS MS. Recruited patients and performed the patient investigations: AR VS LJM MS. Performed the bioinformatic analysis: DS. |
ISSN: | 1553-7404 1553-7390 1553-7404 |
DOI: | 10.1371/journal.pgen.1000874 |