Fibrous Hydrogels for Cell Encapsulation: A Modular and Supramolecular Approach

Artificial 3-dimensional (3D) cell culture systems, which mimic the extracellular matrix (ECM), hold great potential as models to study cellular processes under controlled conditions. The natural ECM is a 3D structure composed of a fibrous hydrogel that provides both mechanical and biochemical cues...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 11; no. 5; p. e0155625
Main Authors Włodarczyk-Biegun, Małgorzata K., Farbod, Kambiz, Werten, Marc W. T., Slingerland, Cornelis J., de Wolf, Frits A., van den Beucken, Jeroen J. J. P., Leeuwenburgh, Sander C. G., Cohen Stuart, Martien A., Kamperman, Marleen
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 25.05.2016
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Artificial 3-dimensional (3D) cell culture systems, which mimic the extracellular matrix (ECM), hold great potential as models to study cellular processes under controlled conditions. The natural ECM is a 3D structure composed of a fibrous hydrogel that provides both mechanical and biochemical cues to instruct cell behavior. Here we present an ECM-mimicking genetically engineered protein-based hydrogel as a 3D cell culture system that combines several key features: (1) Mild and straightforward encapsulation meters (1) ease of ut I am not so sure.encapsulation of the cells, without the need of an external crosslinker. (2) Supramolecular assembly resulting in a fibrous architecture that recapitulates some of the unique mechanical characteristics of the ECM, i.e. strain-stiffening and self-healing behavior. (3) A modular approach allowing controlled incorporation of the biochemical cue density (integrin binding RGD domains). We tested the gels by encapsulating MG-63 osteoblastic cells and found that encapsulated cells not only respond to higher RGD density, but also to overall gel concentration. Cells in 1% and 2% (weight fraction) protein gels showed spreading and proliferation, provided a relative RGD density of at least 50%. In contrast, in 4% gels very little spreading and proliferation occurred, even for a relative RGD density of 100%. The independent control over both mechanical and biochemical cues obtained in this modular approach renders our hydrogels suitable to study cellular responses under highly defined conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: MKWB MWTW FAdW JJJPvdB SCGL MACS MK. Performed the experiments: MKWB KF MWTW CJS. Analyzed the data: MKWB MWTW CJS. Contributed reagents/materials/analysis tools: MKWB KF MWTW CJS JJJPvdB. Wrote the paper: MKWB KF MWTW CJS FAdW JJJPvdB SCGL MACS MK.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0155625