无缝线性回归与预测模型

建立回归模型常采用最小二乘方法并忽略自变量观测误差。尽管同时顾及自变量和因变量观测误差的总体最小二乘方法近年来得到了广泛研究,但在模型预测时,依然忽略了待预测自变量的观测误差。对此,本文提出了一种严格考虑所有变量观测误差的无缝线性回归和预测模型,该模型将回归模型的建立和因变量预测联合处理,在建立回归模型过程中对待预测自变量的观测误差进行估计并修正,从而提高了模型预测效果。理论证明,现有的几种线性回归模型都是无缝线性回归和预测模型的特例。试验结果表明,无缝线性回归和预测模型的预测效果优于现有的几种模型,尤其在变量观测误差相关性较大时,无缝模型对预测效果的改善更为显著。...

Full description

Saved in:
Bibliographic Details
Published in测绘学报 Vol. 45; no. 12; pp. 1396 - 1405
Main Author 王苗苗 李博峰
Format Journal Article
LanguageChinese
Published 同济大学测绘与地理信息学院,上海,200092 2016
Subjects
Online AccessGet full text
ISSN1001-1595
DOI10.11947/j.AGCS.2016.20160263

Cover

Loading…
More Information
Summary:建立回归模型常采用最小二乘方法并忽略自变量观测误差。尽管同时顾及自变量和因变量观测误差的总体最小二乘方法近年来得到了广泛研究,但在模型预测时,依然忽略了待预测自变量的观测误差。对此,本文提出了一种严格考虑所有变量观测误差的无缝线性回归和预测模型,该模型将回归模型的建立和因变量预测联合处理,在建立回归模型过程中对待预测自变量的观测误差进行估计并修正,从而提高了模型预测效果。理论证明,现有的几种线性回归模型都是无缝线性回归和预测模型的特例。试验结果表明,无缝线性回归和预测模型的预测效果优于现有的几种模型,尤其在变量观测误差相关性较大时,无缝模型对预测效果的改善更为显著。
Bibliography:11-2089/P
WANG Miaomiao;LI Bofeng;College of Surveying and Geo-informatics,Tongji University
ISSN:1001-1595
DOI:10.11947/j.AGCS.2016.20160263