Nitric Oxide Inhibits Lipopolysaccharide-Induced Inducible Nitric Oxide Synthase Expression and Its Own Production Through the cGMP Signaling Pathway in Murine Microglia BV-2 Cells

The present study examined the effect of the nitric oxide (NO) donor NOC18 on lipopolysaccharide (LPS)-induced NO production to investigate a regulation mechanism of NO production by microglial cells. LPS increased the levels of NO and inducible NO synthase (iNOS) protein in BV-2 murine microglial c...

Full description

Saved in:
Bibliographic Details
Published inJournal of Pharmacological Sciences Vol. 113; no. 2; pp. 153 - 160
Main Authors Yoshioka, Yasuhiro, Takeda, Nobuo, Yamamuro, Akiko, Kasai, Atsushi, Maeda, Sadaaki
Format Journal Article
LanguageEnglish
Japanese
Published Japan Elsevier B.V 2010
The Japanese Pharmacological Society
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present study examined the effect of the nitric oxide (NO) donor NOC18 on lipopolysaccharide (LPS)-induced NO production to investigate a regulation mechanism of NO production by microglial cells. LPS increased the levels of NO and inducible NO synthase (iNOS) protein in BV-2 murine microglial cells in a concentration-dependent manner. Pretreatment with NOC18 for 24 h concentration-dependently attenuated the LPS-induced iNOS protein expression and NO production. The inhibitory effect of NOC18 on LPS-induced NO production was partially blocked by LY83583, a soluble guanylate cyclase inhibitor. Pretreatment with dibutyryl guanosine-3′,5′-cyclic monophosphate (DBcGMP), a cell-permeable cGMP analogue, for 24 h attenuated partially LPS-induced iNOS protein expression and NO production. Furthermore, the effects of LPS on iNOS and NO production were inhibited by the c-Jun N-terminal kinase (JNK) inhibitor SP600125, and LPS-induced phosphorylation of JNK and c-Jun was inhibited by NOC18 and DBcGMP. These results suggest that NO production by microglial cells is controlled by a negative feedback mechanism via the NO/cGMP signaling pathway.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1347-8613
1347-8648
DOI:10.1254/jphs.10060FP