On the difference equation ${ x_{n+1}=\frac{ax_{n}^{2}+bx_{n-1}x_{n-k}}{cx_{n}^{2}+dx_{n-1}x_{n-k}}}

In this paper we investigate the global convergence result, boundedness, and periodicity of solutions of the recursive sequence \begin{equation*}x_{n+1}=\frac{ax_{n}^{2}+bx_{n-1}x_{n-k}}{cx_{n}^{2}+dx_{n-1}x_{n-k}},\;\;\;n=0,1,\dots\end{equation*}where the parameters $a,b,c$ and $d$ are positive rea...

Full description

Saved in:
Bibliographic Details
Published inSarajevo journal of mathematics Vol. 4; no. 2; pp. 239 - 248
Main Authors Elabbasy, E. M., El-Metwally, H., Elsayed, E.M.
Format Journal Article
LanguageEnglish
Published 11.06.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper we investigate the global convergence result, boundedness, and periodicity of solutions of the recursive sequence \begin{equation*}x_{n+1}=\frac{ax_{n}^{2}+bx_{n-1}x_{n-k}}{cx_{n}^{2}+dx_{n-1}x_{n-k}},\;\;\;n=0,1,\dots\end{equation*}where the parameters $a,b,c$ and $d$ are positive real numbers and the initial conditions $ x_{-k},x_{-k+1},\dots,x_{-1}$ and $x_{0}$ are arbitrary positive numbers.   2000 Mathematics Subject Classification. 39A10
ISSN:1840-0655
2233-1964
DOI:10.5644/SJM.04.2.09