On the Non-commutative Neutrix Product of the Distributions $\delta ^{(r)}(x)$ and $x^{-s}\ln^m|x
It is proved that the non-commutative neutrix product of the distributions $ \delta ^{(r)}(x)$ and $x^{-s} \ln^m|x|$ exists and $$ \delta ^{(r)}(x) \circ x^{-s} \ln^m |x| = 0 $$ for $r,m=0,1,2, \ldots$ and $s = 1,2, \ldots.$ 2000 Mathematics Subject Classification. 46F10
Saved in:
Published in | Sarajevo journal of mathematics Vol. 2; no. 2; pp. 211 - 221 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
12.06.2024
|
Online Access | Get full text |
Cover
Loading…
Summary: | It is proved that the non-commutative neutrix product of the distributions $ \delta ^{(r)}(x)$ and $x^{-s} \ln^m|x|$ exists and $$ \delta ^{(r)}(x) \circ x^{-s} \ln^m |x| = 0 $$ for $r,m=0,1,2, \ldots$ and $s = 1,2, \ldots.$
2000 Mathematics Subject Classification. 46F10 |
---|---|
ISSN: | 1840-0655 2233-1964 |
DOI: | 10.5644/SJM.02.2.08 |