Adding links on minimum degree and longest distance strategies for improving network robustness and efficiency

Many real-world networks characterized by power-law degree distributions are extremely vulnerable against malicious attacks. Therefore, it is important to obtain effective methods for strengthening the robustness of the existing networks. Previous studies have been discussed some link addition metho...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 10; p. e0276733
Main Authors Chujyo, Masaki, Hayashi, Yukio
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 26.10.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Many real-world networks characterized by power-law degree distributions are extremely vulnerable against malicious attacks. Therefore, it is important to obtain effective methods for strengthening the robustness of the existing networks. Previous studies have been discussed some link addition methods for improving the robustness. In particular, two effective strategies for selecting nodes to add links have been proposed: the minimum degree and longest distance strategies. However, it is unclear whether the effects of these strategies on the robustness are independent or not. In this paper, we investigate the contributions of these strategies to improving the robustness by adding links in distinguishing the effects of degrees and distances as much as possible. Through numerical simulation, we find that the robustness is effectively improved by adding links on the minimum degree strategy for both synthetic trees and real networks. As an exception, only when the number of added links is small, the longest distance strategy is the best. Conversely, the robustness is only slightly improved by adding links on the shortest distance strategy in many cases, even combined with the minimum degree strategy. Therefore, enhancing global loops is essential for improving the robustness rather than local loops.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0276733