Autism-Associated Gene Expression in Peripheral Leucocytes Commonly Observed between Subjects with Autism and Healthy Women Having Autistic Children
Autism spectrum disorder (ASD) is a severe neuropsychiatric disorder which has complex pathobiology with profound influences of genetic factors in its development. Although the numerous autism susceptible genes were identified, the etiology of autism is not fully explained. Using DNA microarray, we...
Saved in:
Published in | PloS one Vol. 6; no. 9; p. e24723 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
15.09.2011
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Autism spectrum disorder (ASD) is a severe neuropsychiatric disorder which has complex pathobiology with profound influences of genetic factors in its development. Although the numerous autism susceptible genes were identified, the etiology of autism is not fully explained. Using DNA microarray, we examined gene expression profiling in peripheral blood from 21 individuals in each of the four groups; young adults with ASD, age- and gender-matched healthy subjects (ASD control), healthy mothers having children with ASD (asdMO), and asdMO control. There was no blood relationship between ASD and asdMO. Comparing the ASD group with control, 19 genes were found to be significantly changed. These genes were mainly involved in cell morphology, cellular assembly and organization, and nerve system development and function. In addition, the asdMO group possessed a unique gene expression signature shown as significant alterations of protein synthesis despite of their nonautistic diagnostic status. Moreover, an ASD-associated gene expression signature was commonly observed in both individuals with ASD and asdMO. This unique gene expression profiling detected in peripheral leukocytes from affected subjects with ASD and unaffected mothers having ASD children suggest that a genetic predisposition to ASD may be detectable even in peripheral cells. Altered expression of several autism candidate genes such as FMR-1 and MECP2, could be detected in leukocytes. Taken together, these findings suggest that the ASD-associated genes identified in leukocytes are informative to explore the genetic, epigenetic, and environmental background of ASD and might become potential tools to assess the crucial factors related to the clinical onset of the disorder. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: Y. Kuwano TK RK. Performed the experiments: Y. Kuwano TK SK. Analyzed the data: Y. Kuwano TK SK. Contributed reagents/materials/analysis tools: Y. Kamio NI AT. Wrote the paper: Y. Kuwano Y. Kamio KR. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0024723 |