Asexual populations of the human malaria parasite, Plasmodium falciparum, use a two-step genomic strategy to acquire accurate, beneficial DNA amplifications

Malaria drug resistance contributes to up to a million annual deaths. Judicious deployment of new antimalarials and vaccines could benefit from an understanding of early molecular events that promote the evolution of parasites. Continuous in vitro challenge of Plasmodium falciparum parasites with a...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 9; no. 5; p. e1003375
Main Authors Guler, Jennifer L, Freeman, Daniel L, Ahyong, Vida, Patrapuvich, Rapatbhorn, White, John, Gujjar, Ramesh, Phillips, Margaret A, DeRisi, Joseph, Rathod, Pradipsinh K
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.05.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Malaria drug resistance contributes to up to a million annual deaths. Judicious deployment of new antimalarials and vaccines could benefit from an understanding of early molecular events that promote the evolution of parasites. Continuous in vitro challenge of Plasmodium falciparum parasites with a novel dihydroorotate dehydrogenase (DHODH) inhibitor reproducibly selected for resistant parasites. Genome-wide analysis of independently-derived resistant clones revealed a two-step strategy to evolutionary success. Some haploid blood-stage parasites first survive antimalarial pressure through fortuitous DNA duplications that always included the DHODH gene. Independently-selected parasites had different sized amplification units but they were always flanked by distant A/T tracks. Higher level amplification and resistance was attained using a second, more efficient and more accurate, mechanism for head-to-tail expansion of the founder unit. This second homology-based process could faithfully tune DNA copy numbers in either direction, always retaining the unique DNA amplification sequence from the original A/T-mediated duplication for that parasite line. Pseudo-polyploidy at relevant genomic loci sets the stage for gaining additional mutations at the locus of interest. Overall, we reveal a population-based genomic strategy for mutagenesis that operates in human stages of P. falciparum to efficiently yield resistance-causing genetic changes at the correct locus in a successful parasite. Importantly, these founding events arise with precision; no other new amplifications are seen in the resistant haploid blood stage parasite. This minimizes the need for meiotic genetic cleansing that can only occur in sexual stage development of the parasite in mosquitoes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: JLG DLF JW MAP PKR. Performed the experiments: JLG DLF VA RP JW RG. Analyzed the data: JLG DLF VA RP. Contributed reagents/materials/analysis tools: PKR JD MAP. Wrote the paper: JLG DLF PKR.
Current address: Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America.
Current address: Intellectual Ventures, Bellevue, Washington, United States of America.
Current address: Organix, Inc., Woburn, Massachusetts, United States of America.
The authors have declared that no competing interests exist.
ISSN:1553-7374
1553-7366
1553-7374
DOI:10.1371/journal.ppat.1003375