The Diameter of a Zero-Divisor Graph for Finite Direct Product of Commutative Rings

This paper establishes a set of theorems that describe the diameter of a zero-divisor graph for a finite direct product$R_{1}\times R_{2}\times\cdots\times R_{n}$ with respect to the diameters of the zero-divisor graphs of $R_{1},R_{2},\cdots,R_{n-1}$ and $R_{n}(n>2).$   2000 Mathematics Subject...

Full description

Saved in:
Bibliographic Details
Published inSarajevo journal of mathematics Vol. 3; no. 2; pp. 149 - 156
Main Authors Atani, S. Ebrahimi, Kohan, M. Shajari
Format Journal Article
LanguageEnglish
Published 12.06.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper establishes a set of theorems that describe the diameter of a zero-divisor graph for a finite direct product$R_{1}\times R_{2}\times\cdots\times R_{n}$ with respect to the diameters of the zero-divisor graphs of $R_{1},R_{2},\cdots,R_{n-1}$ and $R_{n}(n>2).$   2000 Mathematics Subject Classification. 05C75, 13A15
ISSN:1840-0655
2233-1964
DOI:10.5644/SJM.03.2.01