Predicting RNA splicing from DNA sequence using Pangolin
Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to predict splice site strength in multiple tissues. Pangolin outperforms state-of-the-art methods for predicting RNA splicing on a variety of pred...
Saved in:
Published in | Genome Biology Vol. 23; no. 1; p. 103 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
21.04.2022
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to predict splice site strength in multiple tissues. Pangolin outperforms state-of-the-art methods for predicting RNA splicing on a variety of prediction tasks. Pangolin improves prediction of the impact of genetic variants on RNA splicing, including common, rare, and lineage-specific genetic variation. In addition, Pangolin identifies loss-of-function mutations with high accuracy and recall, particularly for mutations that are not missense or nonsense, demonstrating remarkable potential for identifying pathogenic variants. |
---|---|
AbstractList | Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to predict splice site strength in multiple tissues. Pangolin outperforms state-of-the-art methods for predicting RNA splicing on a variety of prediction tasks. Pangolin improves prediction of the impact of genetic variants on RNA splicing, including common, rare, and lineage-specific genetic variation. In addition, Pangolin identifies loss-of-function mutations with high accuracy and recall, particularly for mutations that are not missense or nonsense, demonstrating remarkable potential for identifying pathogenic variants.Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to predict splice site strength in multiple tissues. Pangolin outperforms state-of-the-art methods for predicting RNA splicing on a variety of prediction tasks. Pangolin improves prediction of the impact of genetic variants on RNA splicing, including common, rare, and lineage-specific genetic variation. In addition, Pangolin identifies loss-of-function mutations with high accuracy and recall, particularly for mutations that are not missense or nonsense, demonstrating remarkable potential for identifying pathogenic variants. Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to predict splice site strength in multiple tissues. Pangolin outperforms state-of-the-art methods for predicting RNA splicing on a variety of prediction tasks. Pangolin improves prediction of the impact of genetic variants on RNA splicing, including common, rare, and lineage-specific genetic variation. In addition, Pangolin identifies loss-of-function mutations with high accuracy and recall, particularly for mutations that are not missense or nonsense, demonstrating remarkable potential for identifying pathogenic variants. Abstract Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to predict splice site strength in multiple tissues. Pangolin outperforms state-of-the-art methods for predicting RNA splicing on a variety of prediction tasks. Pangolin improves prediction of the impact of genetic variants on RNA splicing, including common, rare, and lineage-specific genetic variation. In addition, Pangolin identifies loss-of-function mutations with high accuracy and recall, particularly for mutations that are not missense or nonsense, demonstrating remarkable potential for identifying pathogenic variants. |
ArticleNumber | 103 |
Author | Li, Yang I Zeng, Tony |
Author_xml | – sequence: 1 givenname: Tony surname: Zeng fullname: Zeng, Tony – sequence: 2 givenname: Yang I orcidid: 0000-0002-0736-251X surname: Li fullname: Li, Yang I |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35449021$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktLHTEUx4NY6qP9Ai7KBTfdTJv3YyOI9iFIFWmhu5BJMre5zE2uyUyh376J14q6kC5CknP-50fyP-cA7MYUPQBHCH5ASPKPBRHIVAcxrotz2tEdsI-ooJ3g8Ofuo_MeOChlBSFSFPPXYI8wShXEaB_I6-xdsFOIy8XNt9NF2YzBtsuQ03px3iL-dvbR-sVcWvzaxGUaQ3wDXg1mLP7t_X4Ifnz-9P3sa3d59eXi7PSys4LAqcMCKUUE7x3p-4EZSpizojfIQWYZN6LH9eKZYBxZg633Djo1cD_UHFOEHIKLLdcls9KbHNYm_9HJBH0XSHmpTZ6CHb2GtLeEYiicMVRSKRHu2eCo9cKoQYnKOtmyNnO_9s76OGUzPoE-zcTwSy_Tb129wpjKCnh_D8ipulImvQ7F-nE00ae56NoFqCSUSP2HlFEsJcZNevxMukpzjtXVBmxIhJsR7x4__uHV_3pZBXgrsDmVkv3wIEFQt4HR24HR9TP6bmA0rUXyWZENk5lCagaE8aXSv24nwyk |
CitedBy_id | crossref_primary_10_1155_2023_6661013 crossref_primary_10_1016_j_xhgg_2024_100351 crossref_primary_10_3390_genes15050576 crossref_primary_10_1016_j_gim_2024_101081 crossref_primary_10_1016_j_xcrp_2022_101149 crossref_primary_10_1186_s40246_023_00451_1 crossref_primary_10_1093_bib_bbae163 crossref_primary_10_1186_s44342_024_00032_1 crossref_primary_10_1371_journal_pcbi_1012755 crossref_primary_10_5734_JGM_2023_20_2_31 crossref_primary_10_1016_j_gene_2025_149381 crossref_primary_10_1186_s13059_023_03162_x crossref_primary_10_1016_j_cell_2024_01_023 crossref_primary_10_1007_s12185_024_03724_0 crossref_primary_10_2197_ipsjtbio_16_20 crossref_primary_10_3390_ijms25179569 crossref_primary_10_1186_s13059_023_03144_z crossref_primary_10_1038_s41431_024_01703_x crossref_primary_10_1172_JCI170669 crossref_primary_10_1093_nargab_lqae057 crossref_primary_10_1038_s41559_023_02053_5 crossref_primary_10_1038_s42003_024_07298_9 crossref_primary_10_1186_s13059_024_03379_4 crossref_primary_10_1016_j_ajo_2025_03_001 crossref_primary_10_1016_j_tig_2024_11_013 crossref_primary_10_1101_gr_279044_124 crossref_primary_10_1016_j_ajhg_2025_02_012 crossref_primary_10_3389_fcvm_2024_1459579 crossref_primary_10_1186_s13059_023_02885_1 crossref_primary_10_1038_s41467_024_53088_6 crossref_primary_10_1038_s41576_022_00556_8 crossref_primary_10_1093_nar_gkae1260 crossref_primary_10_1093_clinchem_hvae147 crossref_primary_10_1016_j_crmeth_2022_100384 crossref_primary_10_3390_ijms25126540 crossref_primary_10_1186_s12864_023_09645_2 crossref_primary_10_1016_j_ajhg_2024_08_002 crossref_primary_10_1016_j_tig_2023_10_001 crossref_primary_10_1038_s41467_024_52474_4 crossref_primary_10_1111_cge_14616 crossref_primary_10_3389_fgene_2024_1381915 crossref_primary_10_1002_ajmg_c_32057 crossref_primary_10_1111_cge_14575 crossref_primary_10_1073_pnas_2218308120 crossref_primary_10_1093_gigascience_giad085 crossref_primary_10_3389_fgene_2024_1477940 crossref_primary_10_1038_s41588_025_02099_0 crossref_primary_10_1038_s41431_024_01760_2 crossref_primary_10_1038_s41576_024_00774_2 crossref_primary_10_1146_annurev_genom_021623_121812 crossref_primary_10_1016_j_mam_2024_101269 crossref_primary_10_1371_journal_pcbi_1011526 crossref_primary_10_1038_s41588_024_02053_6 crossref_primary_10_1016_j_xgen_2023_100460 crossref_primary_10_3390_genes15111380 crossref_primary_10_1016_j_gim_2024_101273 crossref_primary_10_1146_annurev_genom_021623_024727 crossref_primary_10_1002_ajmg_a_63567 crossref_primary_10_1093_bib_bbad284 crossref_primary_10_1038_s41586_024_07556_0 crossref_primary_10_1016_j_jtha_2024_12_030 crossref_primary_10_1038_s10038_023_01211_8 crossref_primary_10_3390_ijms242015205 crossref_primary_10_1038_s41525_025_00472_w crossref_primary_10_1371_journal_pgen_1010932 crossref_primary_10_1038_s10038_023_01143_3 crossref_primary_10_1038_s41591_022_02094_6 crossref_primary_10_1007_s10633_025_10013_6 crossref_primary_10_1016_j_sbi_2024_102979 crossref_primary_10_1101_gr_279158_124 |
Cites_doi | 10.1186/s13059-019-1653-z 10.1093/bioinformatics/btv624 10.1038/s41467-020-18559-6 10.1038/ng.3837 10.1186/s13059-021-02273-7 10.1093/nar/gkx1153 10.1016/0076-6879(90)83018-5 10.1038/s41586-019-1654-9 10.5281/zenodo.6331457 10.1038/s41588-021-00782-6 10.1038/s41586-019-1338-5 10.1016/j.molcel.2018.10.037 10.1093/nar/25.4.888 10.1016/j.cell.2018.12.015 10.1089/1066527041410418 10.1371/journal.pcbi.1008050 10.1186/s13059-021-02334-x 10.1101/gr.181016.114 10.1093/bioinformatics/btaa1016 10.1016/S0968-0004(00)01549-8 10.1093/nargab/lqab041 10.1016/j.cell.2018.12.010 10.1093/bioinformatics/bts635 10.1101/gr.227819.117 10.1126/science.aad9417 10.1016/j.cell.2015.09.054 10.1038/ncomms11558 10.1186/1471-2105-12-323 10.1126/science.aaz1776 10.1016/j.molcel.2006.05.018 10.1038/s41586-018-0461-z |
ContentType | Journal Article |
Copyright | 2022. The Author(s). 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2022 |
Copyright_xml | – notice: 2022. The Author(s). – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.1186/s13059-022-02664-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological science database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef AGRICOLA Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X |
EndPage | 103 |
ExternalDocumentID | oai_doaj_org_article_04bc34207daa4848812b5fd4ce7a9f97 PMC9022248 35449021 10_1186_s13059_022_02664_4 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: R01 HG011067 – fundername: NIGMS NIH HHS grantid: R01GM130738 – fundername: NIGMS NIH HHS grantid: R01 GM130738 – fundername: ; grantid: R01GM130738 |
GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFKRA AFPKN AHBYD AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION EBD EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK IAO IGS IHR ISR ITC KPI LK8 M1P M7P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO ROL RPM RSV SJN SOJ SV3 UKHRP CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c730t-27199376bd3bbf5a435dc7ba1d05c56a7b2ba1e57561ca2ceed0d9f6ef6a75933 |
IEDL.DBID | DOA |
ISSN | 1474-760X 1474-7596 |
IngestDate | Wed Aug 27 01:28:27 EDT 2025 Thu Aug 21 13:33:37 EDT 2025 Thu Jul 10 23:39:55 EDT 2025 Fri Jul 11 02:52:05 EDT 2025 Fri Jul 25 11:54:24 EDT 2025 Thu Apr 03 07:02:56 EDT 2025 Tue Jul 01 03:10:50 EDT 2025 Thu Apr 24 22:59:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c730t-27199376bd3bbf5a435dc7ba1d05c56a7b2ba1e57561ca2ceed0d9f6ef6a75933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0736-251X |
OpenAccessLink | https://doaj.org/article/04bc34207daa4848812b5fd4ce7a9f97 |
PMID | 35449021 |
PQID | 2666609123 |
PQPubID | 2040232 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_04bc34207daa4848812b5fd4ce7a9f97 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9022248 proquest_miscellaneous_2660980819 proquest_miscellaneous_2654288229 proquest_journals_2666609123 pubmed_primary_35449021 crossref_primary_10_1186_s13059_022_02664_4 crossref_citationtrail_10_1186_s13059_022_02664_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-21 |
PublicationDateYYYYMMDD | 2022-04-21 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Genome Biology |
PublicationTitleAlternate | Genome Biol |
PublicationYear | 2022 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | M Cardoso-Moreira (2664_CR5) 2019; 571 CI Dent (2664_CR10) 2021; 3 JO Ilagan (2664_CR13) 2015; 25 BJ Blencowe (2664_CR4) 2000; 25 A Shumate (2664_CR27) 2021; 37 2664_CR23 P Julien (2664_CR15) 2016; 7 ž Avsec (2664_CR2) 2021; 53 H Yoshida (2664_CR31) 2020; 11 A Dobin (2664_CR11) 2013; 29 S Kanton (2664_CR17) 2019; 574 P Baeza-Centurion (2664_CR3) 2019; 176 Z Wang (2664_CR29) 2006; 23 MJ Landrum (2664_CR20) 2018; 46 DR Kelley (2664_CR19) 2018; 28 Z Mu (2664_CR24) 2021; 22 CJ Coolidge (2664_CR9) 1997; 25 DR Kelley (2664_CR18) 2020; 16 J Cheng (2664_CR6) 2021; 22 YI Li (2664_CR22) 2016; 352 G Yeo (2664_CR30) 2004; 11 GM Findlay (2664_CR12) 2018; 562 B Li (2664_CR21) 2011; 12 2664_CR32 A Kahles (2664_CR16) 2016; 32 P Senapathy (2664_CR26) 1990; 183 R Soemedi (2664_CR28) 2017; 49 K Jaganathan (2664_CR14) 2019; 176 R Cheung (2664_CR8) 2019; 73 F Aguet (2664_CR1) 2020; 369 AB Rosenberg (2664_CR25) 2015; 163 J Cheng (2664_CR7) 2019; 20 |
References_xml | – volume: 20 start-page: 48 issue: 1 year: 2019 ident: 2664_CR7 publication-title: Genome Biol doi: 10.1186/s13059-019-1653-z – volume: 32 start-page: 770 issue: 5 year: 2016 ident: 2664_CR16 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv624 – volume: 11 start-page: 4744 issue: 1 year: 2020 ident: 2664_CR31 publication-title: Nat Commun doi: 10.1038/s41467-020-18559-6 – volume: 49 start-page: 848 issue: 6 year: 2017 ident: 2664_CR28 publication-title: Nat Genet doi: 10.1038/ng.3837 – volume: 22 start-page: 94 issue: 1 year: 2021 ident: 2664_CR6 publication-title: Genome Biol doi: 10.1186/s13059-021-02273-7 – volume: 46 start-page: D1062 issue: D1 year: 2018 ident: 2664_CR20 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1153 – volume: 183 start-page: 252 year: 1990 ident: 2664_CR26 publication-title: Methods Enzymol doi: 10.1016/0076-6879(90)83018-5 – volume: 574 start-page: 418 issue: 7778 year: 2019 ident: 2664_CR17 publication-title: Nature doi: 10.1038/s41586-019-1654-9 – ident: 2664_CR32 doi: 10.5281/zenodo.6331457 – volume: 53 start-page: 354 issue: 3 year: 2021 ident: 2664_CR2 publication-title: Nat Genet doi: 10.1038/s41588-021-00782-6 – volume: 571 start-page: 505 issue: 7766 year: 2019 ident: 2664_CR5 publication-title: Nature doi: 10.1038/s41586-019-1338-5 – volume: 73 start-page: 183 issue: 1 year: 2019 ident: 2664_CR8 publication-title: Mol Cell doi: 10.1016/j.molcel.2018.10.037 – volume: 25 start-page: 888 issue: 4 year: 1997 ident: 2664_CR9 publication-title: Nucleic Acids Res doi: 10.1093/nar/25.4.888 – volume: 176 start-page: 535 issue: 3 year: 2019 ident: 2664_CR14 publication-title: Cell doi: 10.1016/j.cell.2018.12.015 – volume: 11 start-page: 377 issue: 2-3 year: 2004 ident: 2664_CR30 publication-title: J Comput Biol doi: 10.1089/1066527041410418 – volume: 16 start-page: e1008050 issue: 7 year: 2020 ident: 2664_CR18 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1008050 – volume: 22 start-page: 122 issue: 1 year: 2021 ident: 2664_CR24 publication-title: Genome Biol doi: 10.1186/s13059-021-02334-x – volume: 25 start-page: 14 issue: 1 year: 2015 ident: 2664_CR13 publication-title: Genome Res doi: 10.1101/gr.181016.114 – volume: 37 start-page: 1639 issue: 12 year: 2021 ident: 2664_CR27 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa1016 – volume: 25 start-page: 106 issue: 3 year: 2000 ident: 2664_CR4 publication-title: Trends Biochem Sci doi: 10.1016/S0968-0004(00)01549-8 – volume: 3 start-page: 1 issue: 2 year: 2021 ident: 2664_CR10 publication-title: NAR Genomics Bioinforma doi: 10.1093/nargab/lqab041 – volume: 176 start-page: 549 issue: 3 year: 2019 ident: 2664_CR3 publication-title: Cell doi: 10.1016/j.cell.2018.12.010 – volume: 29 start-page: 15 issue: 1 year: 2013 ident: 2664_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 28 start-page: 739 issue: 5 year: 2018 ident: 2664_CR19 publication-title: Genome Res doi: 10.1101/gr.227819.117 – volume: 352 start-page: 600 issue: 6285 year: 2016 ident: 2664_CR22 publication-title: Science doi: 10.1126/science.aad9417 – volume: 163 start-page: 698 issue: 3 year: 2015 ident: 2664_CR25 publication-title: Cell doi: 10.1016/j.cell.2015.09.054 – ident: 2664_CR23 – volume: 7 start-page: 11558 issue: 1 year: 2016 ident: 2664_CR15 publication-title: Nat Commun doi: 10.1038/ncomms11558 – volume: 12 start-page: 323 issue: 1 year: 2011 ident: 2664_CR21 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-323 – volume: 369 start-page: 1318 issue: 6509 year: 2020 ident: 2664_CR1 publication-title: Science doi: 10.1126/science.aaz1776 – volume: 23 start-page: 61 issue: 1 year: 2006 ident: 2664_CR29 publication-title: Mol Cell doi: 10.1016/j.molcel.2006.05.018 – volume: 562 start-page: 217 issue: 7726 year: 2018 ident: 2664_CR12 publication-title: Nature doi: 10.1038/s41586-018-0461-z |
SSID | ssj0019426 ssj0017866 |
Score | 2.6436172 |
Snippet | Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to... Abstract Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 103 |
SubjectTerms | Accuracy Animals Base Sequence Chromosomes Deep learning Deoxyribonucleic acid DNA Genes Genetic diversity genetic variation genome loss-of-function mutation Method Mutation Neural networks Nucleotide sequence nucleotide sequences Pangolins prediction Predictions Ribonucleic acid RNA RNA Splice Sites RNA Splicing Splicing |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDDdbx2AvpV33kbYbGfStmMaJP59Kt7WUwUoZLdyb8Vdug5Hr7q4P_e8rJb50N8Y9OlaCTydZkvWzRMiRN6xtlPEQm8RIeWSCusA45QG8_zZhgRA8h_x-JS9v-beJmOQDt0WGVa72xH6jjrOAZ-QnYEikBONWN6d3fyh2jcLsam6h8Zy8wNJlKNVqMgZcTGn0VfLA8Hq4aoQARGHk6gaNlicL2MiFoQhsh5BEwkrXrFRfzP9_Hui_QMq_LNPFDtnOLmV5NsjALnmWutfk5dBk8mGP6Os5JmMQ3lz-uDorF5ixxgHeLCm_4pMMpy4RBD8tr103xVY-b8jtxfnNl0ua-yXQAHq6pLVCNJ6SPjbet8KBJxSD8o7FSgQhnfI1DBI4aJIFV6N5rKJpZWphTpimeUu2ulmX3pMyYP4s-lbrkLiokhcyihC5YwHRbLogbMUfG3Ixcexp8dv2QYWWduCpBZ7anqeWF-R4fOduKKWxkfozsn2kxDLY_YPZfGqzVtmK-9DwulLRORAqDd6KF23kISlnWqMKcrj602zWzYV9kqSCfBqnQaswVeK6NLtHGgFxGRbD30QDX8HGJUDzbpCDcbWN4NyA-1QQtSYhaz9nfab79bOv7m0wBOd6f_PSD8irupdXTmt2SLaW8_v0Adyjpf_Y68AjhmQJTg priority: 102 providerName: ProQuest |
Title | Predicting RNA splicing from DNA sequence using Pangolin |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35449021 https://www.proquest.com/docview/2666609123 https://www.proquest.com/docview/2654288229 https://www.proquest.com/docview/2660980819 https://pubmed.ncbi.nlm.nih.gov/PMC9022248 https://doaj.org/article/04bc34207daa4848812b5fd4ce7a9f97 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1dSxtBcLAWoS-lVq3XajjBNzlyH_tx-2jaiBQaQlAIviz7dakgp5j40H_fmbtLSET0xZeDvZ1ddmdmb2ZuZmcATq3KqkIqi7aJ9wnzGU-My1jCHGr_VaAEIfQf8s9IXF6z31M-XSv1RTFhbXrgFnH9lFlXsDyV3hgcV6JAsrzyzAVpVKWae-Qo85bGVOc_UCh4lldkStGf45eaq4Qi19HmELiUDTHUZOt_ScV8Him5JnouvsDnTmeMz9u17sJWqL_CTltF8t8elONH8rZQ_HI8GZ3Hc3JJU4OujsS_6E0XLx1TlPssHpt6RrV69uH6Ynj18zLpCiIkDg_iIsklhdtJYX1hbcUNqjreSWsyn3LHhZE2x0ZADUxkzuQk_1KvKhEq7OOqKA5gu76vwyHEjhxk3lZl6QLjabBceO48M5mjcLUygmyJH-26bOFUtOJON1ZDKXSLU4041Q1ONYvgbDXmoc2V8Sr0gNC-gqQ8180LpL7uqK_fon4ER0ui6e7wzTXOLwTyRF5EcLLqxmNDvhBTh_snguFoeFG2-9dgcBaqTIIw31o-WK224Iwp1I8ikBscsrGdzZ769m-TvluRjc3K7--x_x_wKW-4miV5dgTbi8encIxa0sL24IOcyh58HAxH40mvOR74nAxu_gOvKxDK |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXRHk10EKQ4ISixo4f8QGhQqm2tF1VqJX2ZvzKgoSyZXcr1D_Fb2QmL1iE9taj7UmUjMeebzzjGUJeOU2rQmkHtkkIGQ9UZNZTnnEP6L-KmCAEzyFPx3J0wT9NxGSD_OrvwmBYZb8nNht1mHk8I98DRSIlKDdWvLv8kWHVKPSu9iU0WrE4jtc_wWRbvD06gPl9zdjhx_MPo6yrKpB5kOZlxhTGrCnpQuFcJSzgheCVszTkwgtplWPQiABjJPWWoRLJg65krGBMaDwAhS3_FijeHI09NRkMPKpKxEZdQ3PWXm3CgEehZX9jp5R7C1AcQmcYSA8mkATOrGjFpnjA_xDvv4Gbf2nCw_vkXgdh0_1W5rbIRqwfkNttUcvrh6Q8m6PzB8Op08_j_XSBHnJs4E2W9AB7uvDtFIPup-mZradYOugRubgRTj4mm_Wsjtsk9eivC64qSx-5yKMTMggfuKUeo-fKhNCeP8Z3ycuxhsZ30xgxpTQtTw3w1DQ8NTwhb4ZnLtvUHWup3yPbB0pMu910zOZT061ik3PnC85yFawFIS4BHTlRBe6jsrrSKiE7_aSZbi9YmD-Sm5CXwzCsYnTN2DrOrpBGgB2IyffX0cBbsFAK0Dxp5WD42kJwrgGuJUStSMjK76yO1N--NtnENZr8vHy6_tNfkDuj89MTc3I0Pn5G7rJGdnnG6A7ZXM6v4i5As6V73qyHlHy56QX4GwUaR2E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+RNA+splicing+from+DNA+sequence+using+Pangolin&rft.jtitle=Genome+biology&rft.au=Zeng%2C+Tony&rft.au=Li%2C+Yang+I&rft.date=2022-04-21&rft.issn=1474-760X&rft.volume=23&rft.issue=1+p.103-103&rft.spage=103&rft.epage=103&rft_id=info:doi/10.1186%2Fs13059-022-02664-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |