Predicting RNA splicing from DNA sequence using Pangolin

Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to predict splice site strength in multiple tissues. Pangolin outperforms state-of-the-art methods for predicting RNA splicing on a variety of pred...

Full description

Saved in:
Bibliographic Details
Published inGenome Biology Vol. 23; no. 1; p. 103
Main Authors Zeng, Tony, Li, Yang I
Format Journal Article
LanguageEnglish
Published England BioMed Central 21.04.2022
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to predict splice site strength in multiple tissues. Pangolin outperforms state-of-the-art methods for predicting RNA splicing on a variety of prediction tasks. Pangolin improves prediction of the impact of genetic variants on RNA splicing, including common, rare, and lineage-specific genetic variation. In addition, Pangolin identifies loss-of-function mutations with high accuracy and recall, particularly for mutations that are not missense or nonsense, demonstrating remarkable potential for identifying pathogenic variants.
AbstractList Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to predict splice site strength in multiple tissues. Pangolin outperforms state-of-the-art methods for predicting RNA splicing on a variety of prediction tasks. Pangolin improves prediction of the impact of genetic variants on RNA splicing, including common, rare, and lineage-specific genetic variation. In addition, Pangolin identifies loss-of-function mutations with high accuracy and recall, particularly for mutations that are not missense or nonsense, demonstrating remarkable potential for identifying pathogenic variants.Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to predict splice site strength in multiple tissues. Pangolin outperforms state-of-the-art methods for predicting RNA splicing on a variety of prediction tasks. Pangolin improves prediction of the impact of genetic variants on RNA splicing, including common, rare, and lineage-specific genetic variation. In addition, Pangolin identifies loss-of-function mutations with high accuracy and recall, particularly for mutations that are not missense or nonsense, demonstrating remarkable potential for identifying pathogenic variants.
Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to predict splice site strength in multiple tissues. Pangolin outperforms state-of-the-art methods for predicting RNA splicing on a variety of prediction tasks. Pangolin improves prediction of the impact of genetic variants on RNA splicing, including common, rare, and lineage-specific genetic variation. In addition, Pangolin identifies loss-of-function mutations with high accuracy and recall, particularly for mutations that are not missense or nonsense, demonstrating remarkable potential for identifying pathogenic variants.
Abstract Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to predict splice site strength in multiple tissues. Pangolin outperforms state-of-the-art methods for predicting RNA splicing on a variety of prediction tasks. Pangolin improves prediction of the impact of genetic variants on RNA splicing, including common, rare, and lineage-specific genetic variation. In addition, Pangolin identifies loss-of-function mutations with high accuracy and recall, particularly for mutations that are not missense or nonsense, demonstrating remarkable potential for identifying pathogenic variants.
ArticleNumber 103
Author Li, Yang I
Zeng, Tony
Author_xml – sequence: 1
  givenname: Tony
  surname: Zeng
  fullname: Zeng, Tony
– sequence: 2
  givenname: Yang I
  orcidid: 0000-0002-0736-251X
  surname: Li
  fullname: Li, Yang I
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35449021$$D View this record in MEDLINE/PubMed
BookMark eNqNkktLHTEUx4NY6qP9Ai7KBTfdTJv3YyOI9iFIFWmhu5BJMre5zE2uyUyh376J14q6kC5CknP-50fyP-cA7MYUPQBHCH5ASPKPBRHIVAcxrotz2tEdsI-ooJ3g8Ofuo_MeOChlBSFSFPPXYI8wShXEaB_I6-xdsFOIy8XNt9NF2YzBtsuQ03px3iL-dvbR-sVcWvzaxGUaQ3wDXg1mLP7t_X4Ifnz-9P3sa3d59eXi7PSys4LAqcMCKUUE7x3p-4EZSpizojfIQWYZN6LH9eKZYBxZg633Djo1cD_UHFOEHIKLLdcls9KbHNYm_9HJBH0XSHmpTZ6CHb2GtLeEYiicMVRSKRHu2eCo9cKoQYnKOtmyNnO_9s76OGUzPoE-zcTwSy_Tb129wpjKCnh_D8ipulImvQ7F-nE00ae56NoFqCSUSP2HlFEsJcZNevxMukpzjtXVBmxIhJsR7x4__uHV_3pZBXgrsDmVkv3wIEFQt4HR24HR9TP6bmA0rUXyWZENk5lCagaE8aXSv24nwyk
CitedBy_id crossref_primary_10_1155_2023_6661013
crossref_primary_10_1016_j_xhgg_2024_100351
crossref_primary_10_3390_genes15050576
crossref_primary_10_1016_j_gim_2024_101081
crossref_primary_10_1016_j_xcrp_2022_101149
crossref_primary_10_1186_s40246_023_00451_1
crossref_primary_10_1093_bib_bbae163
crossref_primary_10_1186_s44342_024_00032_1
crossref_primary_10_1371_journal_pcbi_1012755
crossref_primary_10_5734_JGM_2023_20_2_31
crossref_primary_10_1016_j_gene_2025_149381
crossref_primary_10_1186_s13059_023_03162_x
crossref_primary_10_1016_j_cell_2024_01_023
crossref_primary_10_1007_s12185_024_03724_0
crossref_primary_10_2197_ipsjtbio_16_20
crossref_primary_10_3390_ijms25179569
crossref_primary_10_1186_s13059_023_03144_z
crossref_primary_10_1038_s41431_024_01703_x
crossref_primary_10_1172_JCI170669
crossref_primary_10_1093_nargab_lqae057
crossref_primary_10_1038_s41559_023_02053_5
crossref_primary_10_1038_s42003_024_07298_9
crossref_primary_10_1186_s13059_024_03379_4
crossref_primary_10_1016_j_ajo_2025_03_001
crossref_primary_10_1016_j_tig_2024_11_013
crossref_primary_10_1101_gr_279044_124
crossref_primary_10_1016_j_ajhg_2025_02_012
crossref_primary_10_3389_fcvm_2024_1459579
crossref_primary_10_1186_s13059_023_02885_1
crossref_primary_10_1038_s41467_024_53088_6
crossref_primary_10_1038_s41576_022_00556_8
crossref_primary_10_1093_nar_gkae1260
crossref_primary_10_1093_clinchem_hvae147
crossref_primary_10_1016_j_crmeth_2022_100384
crossref_primary_10_3390_ijms25126540
crossref_primary_10_1186_s12864_023_09645_2
crossref_primary_10_1016_j_ajhg_2024_08_002
crossref_primary_10_1016_j_tig_2023_10_001
crossref_primary_10_1038_s41467_024_52474_4
crossref_primary_10_1111_cge_14616
crossref_primary_10_3389_fgene_2024_1381915
crossref_primary_10_1002_ajmg_c_32057
crossref_primary_10_1111_cge_14575
crossref_primary_10_1073_pnas_2218308120
crossref_primary_10_1093_gigascience_giad085
crossref_primary_10_3389_fgene_2024_1477940
crossref_primary_10_1038_s41588_025_02099_0
crossref_primary_10_1038_s41431_024_01760_2
crossref_primary_10_1038_s41576_024_00774_2
crossref_primary_10_1146_annurev_genom_021623_121812
crossref_primary_10_1016_j_mam_2024_101269
crossref_primary_10_1371_journal_pcbi_1011526
crossref_primary_10_1038_s41588_024_02053_6
crossref_primary_10_1016_j_xgen_2023_100460
crossref_primary_10_3390_genes15111380
crossref_primary_10_1016_j_gim_2024_101273
crossref_primary_10_1146_annurev_genom_021623_024727
crossref_primary_10_1002_ajmg_a_63567
crossref_primary_10_1093_bib_bbad284
crossref_primary_10_1038_s41586_024_07556_0
crossref_primary_10_1016_j_jtha_2024_12_030
crossref_primary_10_1038_s10038_023_01211_8
crossref_primary_10_3390_ijms242015205
crossref_primary_10_1038_s41525_025_00472_w
crossref_primary_10_1371_journal_pgen_1010932
crossref_primary_10_1038_s10038_023_01143_3
crossref_primary_10_1038_s41591_022_02094_6
crossref_primary_10_1007_s10633_025_10013_6
crossref_primary_10_1016_j_sbi_2024_102979
crossref_primary_10_1101_gr_279158_124
Cites_doi 10.1186/s13059-019-1653-z
10.1093/bioinformatics/btv624
10.1038/s41467-020-18559-6
10.1038/ng.3837
10.1186/s13059-021-02273-7
10.1093/nar/gkx1153
10.1016/0076-6879(90)83018-5
10.1038/s41586-019-1654-9
10.5281/zenodo.6331457
10.1038/s41588-021-00782-6
10.1038/s41586-019-1338-5
10.1016/j.molcel.2018.10.037
10.1093/nar/25.4.888
10.1016/j.cell.2018.12.015
10.1089/1066527041410418
10.1371/journal.pcbi.1008050
10.1186/s13059-021-02334-x
10.1101/gr.181016.114
10.1093/bioinformatics/btaa1016
10.1016/S0968-0004(00)01549-8
10.1093/nargab/lqab041
10.1016/j.cell.2018.12.010
10.1093/bioinformatics/bts635
10.1101/gr.227819.117
10.1126/science.aad9417
10.1016/j.cell.2015.09.054
10.1038/ncomms11558
10.1186/1471-2105-12-323
10.1126/science.aaz1776
10.1016/j.molcel.2006.05.018
10.1038/s41586-018-0461-z
ContentType Journal Article
Copyright 2022. The Author(s).
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022
Copyright_xml – notice: 2022. The Author(s).
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s13059-022-02664-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological science database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
AGRICOLA


Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
EndPage 103
ExternalDocumentID oai_doaj_org_article_04bc34207daa4848812b5fd4ce7a9f97
PMC9022248
35449021
10_1186_s13059_022_02664_4
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: R01 HG011067
– fundername: NIGMS NIH HHS
  grantid: R01GM130738
– fundername: NIGMS NIH HHS
  grantid: R01 GM130738
– fundername: ;
  grantid: R01GM130738
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFKRA
AFPKN
AHBYD
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
EBD
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
IAO
IGS
IHR
ISR
ITC
KPI
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c730t-27199376bd3bbf5a435dc7ba1d05c56a7b2ba1e57561ca2ceed0d9f6ef6a75933
IEDL.DBID DOA
ISSN 1474-760X
1474-7596
IngestDate Wed Aug 27 01:28:27 EDT 2025
Thu Aug 21 13:33:37 EDT 2025
Thu Jul 10 23:39:55 EDT 2025
Fri Jul 11 02:52:05 EDT 2025
Fri Jul 25 11:54:24 EDT 2025
Thu Apr 03 07:02:56 EDT 2025
Tue Jul 01 03:10:50 EDT 2025
Thu Apr 24 22:59:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c730t-27199376bd3bbf5a435dc7ba1d05c56a7b2ba1e57561ca2ceed0d9f6ef6a75933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0736-251X
OpenAccessLink https://doaj.org/article/04bc34207daa4848812b5fd4ce7a9f97
PMID 35449021
PQID 2666609123
PQPubID 2040232
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_04bc34207daa4848812b5fd4ce7a9f97
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9022248
proquest_miscellaneous_2660980819
proquest_miscellaneous_2654288229
proquest_journals_2666609123
pubmed_primary_35449021
crossref_primary_10_1186_s13059_022_02664_4
crossref_citationtrail_10_1186_s13059_022_02664_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-21
PublicationDateYYYYMMDD 2022-04-21
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Genome Biology
PublicationTitleAlternate Genome Biol
PublicationYear 2022
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References M Cardoso-Moreira (2664_CR5) 2019; 571
CI Dent (2664_CR10) 2021; 3
JO Ilagan (2664_CR13) 2015; 25
BJ Blencowe (2664_CR4) 2000; 25
A Shumate (2664_CR27) 2021; 37
2664_CR23
P Julien (2664_CR15) 2016; 7
ž Avsec (2664_CR2) 2021; 53
H Yoshida (2664_CR31) 2020; 11
A Dobin (2664_CR11) 2013; 29
S Kanton (2664_CR17) 2019; 574
P Baeza-Centurion (2664_CR3) 2019; 176
Z Wang (2664_CR29) 2006; 23
MJ Landrum (2664_CR20) 2018; 46
DR Kelley (2664_CR19) 2018; 28
Z Mu (2664_CR24) 2021; 22
CJ Coolidge (2664_CR9) 1997; 25
DR Kelley (2664_CR18) 2020; 16
J Cheng (2664_CR6) 2021; 22
YI Li (2664_CR22) 2016; 352
G Yeo (2664_CR30) 2004; 11
GM Findlay (2664_CR12) 2018; 562
B Li (2664_CR21) 2011; 12
2664_CR32
A Kahles (2664_CR16) 2016; 32
P Senapathy (2664_CR26) 1990; 183
R Soemedi (2664_CR28) 2017; 49
K Jaganathan (2664_CR14) 2019; 176
R Cheung (2664_CR8) 2019; 73
F Aguet (2664_CR1) 2020; 369
AB Rosenberg (2664_CR25) 2015; 163
J Cheng (2664_CR7) 2019; 20
References_xml – volume: 20
  start-page: 48
  issue: 1
  year: 2019
  ident: 2664_CR7
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1653-z
– volume: 32
  start-page: 770
  issue: 5
  year: 2016
  ident: 2664_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv624
– volume: 11
  start-page: 4744
  issue: 1
  year: 2020
  ident: 2664_CR31
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18559-6
– volume: 49
  start-page: 848
  issue: 6
  year: 2017
  ident: 2664_CR28
  publication-title: Nat Genet
  doi: 10.1038/ng.3837
– volume: 22
  start-page: 94
  issue: 1
  year: 2021
  ident: 2664_CR6
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02273-7
– volume: 46
  start-page: D1062
  issue: D1
  year: 2018
  ident: 2664_CR20
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1153
– volume: 183
  start-page: 252
  year: 1990
  ident: 2664_CR26
  publication-title: Methods Enzymol
  doi: 10.1016/0076-6879(90)83018-5
– volume: 574
  start-page: 418
  issue: 7778
  year: 2019
  ident: 2664_CR17
  publication-title: Nature
  doi: 10.1038/s41586-019-1654-9
– ident: 2664_CR32
  doi: 10.5281/zenodo.6331457
– volume: 53
  start-page: 354
  issue: 3
  year: 2021
  ident: 2664_CR2
  publication-title: Nat Genet
  doi: 10.1038/s41588-021-00782-6
– volume: 571
  start-page: 505
  issue: 7766
  year: 2019
  ident: 2664_CR5
  publication-title: Nature
  doi: 10.1038/s41586-019-1338-5
– volume: 73
  start-page: 183
  issue: 1
  year: 2019
  ident: 2664_CR8
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2018.10.037
– volume: 25
  start-page: 888
  issue: 4
  year: 1997
  ident: 2664_CR9
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.4.888
– volume: 176
  start-page: 535
  issue: 3
  year: 2019
  ident: 2664_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.015
– volume: 11
  start-page: 377
  issue: 2-3
  year: 2004
  ident: 2664_CR30
  publication-title: J Comput Biol
  doi: 10.1089/1066527041410418
– volume: 16
  start-page: e1008050
  issue: 7
  year: 2020
  ident: 2664_CR18
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1008050
– volume: 22
  start-page: 122
  issue: 1
  year: 2021
  ident: 2664_CR24
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02334-x
– volume: 25
  start-page: 14
  issue: 1
  year: 2015
  ident: 2664_CR13
  publication-title: Genome Res
  doi: 10.1101/gr.181016.114
– volume: 37
  start-page: 1639
  issue: 12
  year: 2021
  ident: 2664_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa1016
– volume: 25
  start-page: 106
  issue: 3
  year: 2000
  ident: 2664_CR4
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(00)01549-8
– volume: 3
  start-page: 1
  issue: 2
  year: 2021
  ident: 2664_CR10
  publication-title: NAR Genomics Bioinforma
  doi: 10.1093/nargab/lqab041
– volume: 176
  start-page: 549
  issue: 3
  year: 2019
  ident: 2664_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.010
– volume: 29
  start-page: 15
  issue: 1
  year: 2013
  ident: 2664_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 28
  start-page: 739
  issue: 5
  year: 2018
  ident: 2664_CR19
  publication-title: Genome Res
  doi: 10.1101/gr.227819.117
– volume: 352
  start-page: 600
  issue: 6285
  year: 2016
  ident: 2664_CR22
  publication-title: Science
  doi: 10.1126/science.aad9417
– volume: 163
  start-page: 698
  issue: 3
  year: 2015
  ident: 2664_CR25
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.054
– ident: 2664_CR23
– volume: 7
  start-page: 11558
  issue: 1
  year: 2016
  ident: 2664_CR15
  publication-title: Nat Commun
  doi: 10.1038/ncomms11558
– volume: 12
  start-page: 323
  issue: 1
  year: 2011
  ident: 2664_CR21
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-323
– volume: 369
  start-page: 1318
  issue: 6509
  year: 2020
  ident: 2664_CR1
  publication-title: Science
  doi: 10.1126/science.aaz1776
– volume: 23
  start-page: 61
  issue: 1
  year: 2006
  ident: 2664_CR29
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2006.05.018
– volume: 562
  start-page: 217
  issue: 7726
  year: 2018
  ident: 2664_CR12
  publication-title: Nature
  doi: 10.1038/s41586-018-0461-z
SSID ssj0019426
ssj0017866
Score 2.6436172
Snippet Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to...
Abstract Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 103
SubjectTerms Accuracy
Animals
Base Sequence
Chromosomes
Deep learning
Deoxyribonucleic acid
DNA
Genes
Genetic diversity
genetic variation
genome
loss-of-function mutation
Method
Mutation
Neural networks
Nucleotide sequence
nucleotide sequences
Pangolins
prediction
Predictions
Ribonucleic acid
RNA
RNA Splice Sites
RNA Splicing
Splicing
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDDdbx2AvpV33kbYbGfStmMaJP59Kt7WUwUoZLdyb8Vdug5Hr7q4P_e8rJb50N8Y9OlaCTydZkvWzRMiRN6xtlPEQm8RIeWSCusA45QG8_zZhgRA8h_x-JS9v-beJmOQDt0WGVa72xH6jjrOAZ-QnYEikBONWN6d3fyh2jcLsam6h8Zy8wNJlKNVqMgZcTGn0VfLA8Hq4aoQARGHk6gaNlicL2MiFoQhsh5BEwkrXrFRfzP9_Hui_QMq_LNPFDtnOLmV5NsjALnmWutfk5dBk8mGP6Os5JmMQ3lz-uDorF5ixxgHeLCm_4pMMpy4RBD8tr103xVY-b8jtxfnNl0ua-yXQAHq6pLVCNJ6SPjbet8KBJxSD8o7FSgQhnfI1DBI4aJIFV6N5rKJpZWphTpimeUu2ulmX3pMyYP4s-lbrkLiokhcyihC5YwHRbLogbMUfG3Ixcexp8dv2QYWWduCpBZ7anqeWF-R4fOduKKWxkfozsn2kxDLY_YPZfGqzVtmK-9DwulLRORAqDd6KF23kISlnWqMKcrj602zWzYV9kqSCfBqnQaswVeK6NLtHGgFxGRbD30QDX8HGJUDzbpCDcbWN4NyA-1QQtSYhaz9nfab79bOv7m0wBOd6f_PSD8irupdXTmt2SLaW8_v0Adyjpf_Y68AjhmQJTg
  priority: 102
  providerName: ProQuest
Title Predicting RNA splicing from DNA sequence using Pangolin
URI https://www.ncbi.nlm.nih.gov/pubmed/35449021
https://www.proquest.com/docview/2666609123
https://www.proquest.com/docview/2654288229
https://www.proquest.com/docview/2660980819
https://pubmed.ncbi.nlm.nih.gov/PMC9022248
https://doaj.org/article/04bc34207daa4848812b5fd4ce7a9f97
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1dSxtBcLAWoS-lVq3XajjBNzlyH_tx-2jaiBQaQlAIviz7dakgp5j40H_fmbtLSET0xZeDvZ1ddmdmb2ZuZmcATq3KqkIqi7aJ9wnzGU-My1jCHGr_VaAEIfQf8s9IXF6z31M-XSv1RTFhbXrgFnH9lFlXsDyV3hgcV6JAsrzyzAVpVKWae-Qo85bGVOc_UCh4lldkStGf45eaq4Qi19HmELiUDTHUZOt_ScV8Him5JnouvsDnTmeMz9u17sJWqL_CTltF8t8elONH8rZQ_HI8GZ3Hc3JJU4OujsS_6E0XLx1TlPssHpt6RrV69uH6Ynj18zLpCiIkDg_iIsklhdtJYX1hbcUNqjreSWsyn3LHhZE2x0ZADUxkzuQk_1KvKhEq7OOqKA5gu76vwyHEjhxk3lZl6QLjabBceO48M5mjcLUygmyJH-26bOFUtOJON1ZDKXSLU4041Q1ONYvgbDXmoc2V8Sr0gNC-gqQ8180LpL7uqK_fon4ER0ui6e7wzTXOLwTyRF5EcLLqxmNDvhBTh_snguFoeFG2-9dgcBaqTIIw31o-WK224Iwp1I8ikBscsrGdzZ769m-TvluRjc3K7--x_x_wKW-4miV5dgTbi8encIxa0sL24IOcyh58HAxH40mvOR74nAxu_gOvKxDK
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXRHk10EKQ4ISixo4f8QGhQqm2tF1VqJX2ZvzKgoSyZXcr1D_Fb2QmL1iE9taj7UmUjMeebzzjGUJeOU2rQmkHtkkIGQ9UZNZTnnEP6L-KmCAEzyFPx3J0wT9NxGSD_OrvwmBYZb8nNht1mHk8I98DRSIlKDdWvLv8kWHVKPSu9iU0WrE4jtc_wWRbvD06gPl9zdjhx_MPo6yrKpB5kOZlxhTGrCnpQuFcJSzgheCVszTkwgtplWPQiABjJPWWoRLJg65krGBMaDwAhS3_FijeHI09NRkMPKpKxEZdQ3PWXm3CgEehZX9jp5R7C1AcQmcYSA8mkATOrGjFpnjA_xDvv4Gbf2nCw_vkXgdh0_1W5rbIRqwfkNttUcvrh6Q8m6PzB8Op08_j_XSBHnJs4E2W9AB7uvDtFIPup-mZradYOugRubgRTj4mm_Wsjtsk9eivC64qSx-5yKMTMggfuKUeo-fKhNCeP8Z3ycuxhsZ30xgxpTQtTw3w1DQ8NTwhb4ZnLtvUHWup3yPbB0pMu910zOZT061ik3PnC85yFawFIS4BHTlRBe6jsrrSKiE7_aSZbi9YmD-Sm5CXwzCsYnTN2DrOrpBGgB2IyffX0cBbsFAK0Dxp5WD42kJwrgGuJUStSMjK76yO1N--NtnENZr8vHy6_tNfkDuj89MTc3I0Pn5G7rJGdnnG6A7ZXM6v4i5As6V73qyHlHy56QX4GwUaR2E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+RNA+splicing+from+DNA+sequence+using+Pangolin&rft.jtitle=Genome+biology&rft.au=Zeng%2C+Tony&rft.au=Li%2C+Yang+I&rft.date=2022-04-21&rft.issn=1474-760X&rft.volume=23&rft.issue=1+p.103-103&rft.spage=103&rft.epage=103&rft_id=info:doi/10.1186%2Fs13059-022-02664-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon