Predicting RNA splicing from DNA sequence using Pangolin

Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to predict splice site strength in multiple tissues. Pangolin outperforms state-of-the-art methods for predicting RNA splicing on a variety of pred...

Full description

Saved in:
Bibliographic Details
Published inGenome Biology Vol. 23; no. 1; p. 103
Main Authors Zeng, Tony, Li, Yang I
Format Journal Article
LanguageEnglish
Published England BioMed Central 21.04.2022
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to predict splice site strength in multiple tissues. Pangolin outperforms state-of-the-art methods for predicting RNA splicing on a variety of prediction tasks. Pangolin improves prediction of the impact of genetic variants on RNA splicing, including common, rare, and lineage-specific genetic variation. In addition, Pangolin identifies loss-of-function mutations with high accuracy and recall, particularly for mutations that are not missense or nonsense, demonstrating remarkable potential for identifying pathogenic variants.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-022-02664-4