Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models

Complex traits are known to be influenced by a combination of environmental factors and rare and common genetic variants. However, detection of such multivariate associations can be compromised by low statistical power and confounding by population structure. Linear mixed effects models (LMM) can ac...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 16; no. 5; p. e1008766
Main Authors Bhatnagar, Sahir R., Yang, Yi, Lu, Tianyuan, Schurr, Erwin, Loredo-Osti, JC, Forest, Marie, Oualkacha, Karim, Greenwood, Celia M. T.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 04.05.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7404
1553-7390
1553-7404
DOI10.1371/journal.pgen.1008766

Cover

Loading…
More Information
Summary:Complex traits are known to be influenced by a combination of environmental factors and rare and common genetic variants. However, detection of such multivariate associations can be compromised by low statistical power and confounding by population structure. Linear mixed effects models (LMM) can account for correlations due to relatedness but have not been applicable in high-dimensional (HD) settings where the number of fixed effect predictors greatly exceeds the number of samples. False positives or false negatives can result from two-stage approaches, where the residuals estimated from a null model adjusted for the subjects' relationship structure are subsequently used as the response in a standard penalized regression model. To overcome these challenges, we develop a general penalized LMM with a single random effect called ggmix for simultaneous SNP selection and adjustment for population structure in high dimensional prediction models. We develop a blockwise coordinate descent algorithm with automatic tuning parameter selection which is highly scalable, computationally efficient and has theoretical guarantees of convergence. Through simulations and three real data examples, we show that ggmix leads to more parsimonious models compared to the two-stage approach or principal component adjustment with better prediction accuracy. Our method performs well even in the presence of highly correlated markers, and when the causal SNPs are included in the kinship matrix. ggmix can be used to construct polygenic risk scores and select instrumental variables in Mendelian randomization studies. Our algorithms are available in an R package available on CRAN (https://cran.r-project.org/package=ggmix).
Bibliography:new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
The authors have declared that no competing interests exist.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1008766