Tdp1 processes chromate-induced single-strand DNA breaks that collapse replication forks

Hexavalent chromium [Cr(VI)] damages DNA and causes cancer, but it is unclear which DNA damage responses (DDRs) most critically protect cells from chromate toxicity. Here, genome-wide quantitative functional profiling, DDR measurements and genetic interaction assays in Schizosaccharomyces pombe reve...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 14; no. 8; p. e1007595
Main Authors Ganguly, Abantika, Guo, Lan, Sun, Lingling, Suo, Fang, Du, Li-Lin, Russell, Paul
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 27.08.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hexavalent chromium [Cr(VI)] damages DNA and causes cancer, but it is unclear which DNA damage responses (DDRs) most critically protect cells from chromate toxicity. Here, genome-wide quantitative functional profiling, DDR measurements and genetic interaction assays in Schizosaccharomyces pombe reveal a chromate toxicogenomic profile that closely resembles the cancer chemotherapeutic drug camptothecin (CPT), which traps Topoisomerase 1 (Top1)-DNA covalent complex (Top1cc) at the 3' end of single-stand breaks (SSBs), resulting in replication fork collapse. ATR/Rad3-dependent checkpoints that detect stalled and collapsed replication forks are crucial in Cr(VI)-treated cells, as is Mus81-dependent sister chromatid recombination (SCR) that repairs single-ended double-strand breaks (seDSBs) at broken replication forks. Surprisingly, chromate resistance does not require base excision repair (BER) or interstrand crosslink (ICL) repair, nor does co-elimination of XPA-dependent nucleotide excision repair (NER) and Rad18-mediated post-replication repair (PRR) confer chromate sensitivity in fission yeast. However, co-elimination of Tdp1 tyrosyl-DNA phosphodiesterase and Rad16-Swi10 (XPF-ERCC1) NER endonuclease synergistically enhances chromate toxicity in top1Δ cells. Pnk1 polynucleotide kinase phosphatase (PNKP), which restores 3'-hydroxyl ends to SSBs processed by Tdp1, is also critical for chromate resistance. Loss of Tdp1 ameliorates pnk1Δ chromate sensitivity while enhancing the requirement for Mus81. Thus, Tdp1 and PNKP, which prevent neurodegeneration in humans, repair an important class of Cr-induced SSBs that collapse replication forks.
Bibliography:new_version
The authors have declared that no competing interests exist.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1007595