Evidence that two ATP-dependent (Lon) proteases in Borrelia burgdorferi serve different functions

The canonical ATP-dependent protease Lon participates in an assortment of biological processes in bacteria, including the catalysis of damaged or senescent proteins and short-lived regulatory proteins. Borrelia spirochetes are unusual in that they code for two putative ATP-dependent Lon homologs, Lo...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 5; no. 11; p. e1000676
Main Authors Coleman, James L, Katona, Laura I, Kuhlow, Christopher, Toledo, Alvaro, Okan, Nihal A, Tokarz, Rafal, Benach, Jorge L
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.11.2009
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The canonical ATP-dependent protease Lon participates in an assortment of biological processes in bacteria, including the catalysis of damaged or senescent proteins and short-lived regulatory proteins. Borrelia spirochetes are unusual in that they code for two putative ATP-dependent Lon homologs, Lon-1 and Lon-2. Borrelia burgdorferi, the etiologic agent of Lyme disease, is transmitted through the blood feeding of Ixodes ticks. Previous work in our laboratory reported that B. burgdorferi lon-1 is upregulated transcriptionally by exposure to blood in vitro, while lon-2 is not. Because blood induction of Lon-1 may be of importance in the regulation of virulence factors critical for spirochete transmission, the clarification of functional roles for these two proteases in B. burgdorferi was the object of this study. On the chromosome, lon-2 is immediately downstream of ATP-dependent proteases clpP and clpX, an arrangement identical to that of lon of Escherichia coli. Phylogenetic analysis revealed that Lon-1 and Lon-2 cluster separately due to differences in the NH(2)-terminal substrate binding domains that may reflect differences in substrate specificity. Recombinant Lon-1 manifested properties of an ATP-dependent chaperone-protease in vitro but did not complement an E. coli Lon mutant, while Lon-2 corrected two characteristic Lon-mutant phenotypes. We conclude that B. burgdorferi Lons -1 and -2 have distinct functional roles. Lon-2 functions in a manner consistent with canonical Lon, engaged in cellular homeostasis. Lon-1, by virtue of its blood induction, and as a unique feature of the Borreliae, may be important in host adaptation from the arthropod to a warm-blooded host.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Conceived and designed the experiments: JLC LIK AT NAO JLB. Performed the experiments: JLC LIK CK AT NAO. Analyzed the data: JLC LIK CK AT NAO RT. Contributed reagents/materials/analysis tools: RT. Wrote the paper: JLC LIK JLB.
ISSN:1553-7374
1553-7366
1553-7374
DOI:10.1371/journal.ppat.1000676