Long-term high-fructose high-fat diet feeding elicits insulin resistance, exacerbates dyslipidemia and induces gut microbiota dysbiosis in WHHL rabbits

The metabolic syndrome (MetS) has become a global public health burden due to its link to cardiovascular disease and diabetes mellitus. The present study was designed to characterize the metabolic and cardiovascular disturbances, as well as changes in gut microbiota associated with high-fructose hig...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 2; p. e0264215
Main Authors Moughaizel, Michelle, Dagher, Elie, Jablaoui, Amin, Thorin, Chantal, Rhimi, Moez, Desfontis, Jean-Claude, Mallem, Yassine
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 23.02.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The metabolic syndrome (MetS) has become a global public health burden due to its link to cardiovascular disease and diabetes mellitus. The present study was designed to characterize the metabolic and cardiovascular disturbances, as well as changes in gut microbiota associated with high-fructose high-fat diet (HFFD)-induced MetS in Watanabe heritable hyperlipidemic (WHHL) rabbits. Twenty-one Watanabe rabbits were assigned to a control (n = 9) and HFFD (n = 12) groups, receiving a chow diet and a HFFD, respectively. During a 12-weeks protocol, morphological parameters were monitored; plasma fasting levels of lipids, glucose and insulin were measured and a glucose tolerance test (GTT) was performed. HOMA-IR was calculated. Cardiac function and vascular reactivity were evaluated using the Langendorff isolated heart and isolated carotid arteries methods, respectively. 16S rRNA sequencing of stool samples was used to determine gut microbial composition and abundance. HFFD-fed Watanabe rabbits exhibited increased fasting insulin (p < 0.03, 12th week vs. Baseline), HOMA-IR (p < 0.03 vs. Control), area under the curve of the GTT (p < 0.02 vs. Control), triglycerides (p < 0.05, 12th week vs. Baseline), TC (p < 0.01 vs. Control), LDL-C (p < 0.001 vs. Control). The HFFD group also displayed a significant decrease in intestinal microbial richness, evenness and diversity (FDR < 0.001, FDR < 0.0001, FDR < 0.01, respectively vs. Control group) and an increase in its Firmicutes/Bacteroidetes ratio (R = 3.39 in control vs. R = 28.24 in the HFFD group) indicating a shift in intestinal microbial composition and diversity. Our results suggest that HFFD induces insulin resistance and gut microbiota dysbiosis and accentuates dyslipidemia; and that, when subjected to HFFD, Watanabe rabbits might become a potential diet-induced MetS animal models with two main features, dyslipidemia and insulin resistance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0264215