Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells

Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH⁻/⁻ mice) as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH⁻/⁻-induced pluripotent stem cells (iPS cells) as targets for gene correction...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 9; no. 7; p. e1001099
Main Authors Wu, Guangming, Liu, Na, Rittelmeyer, Ina, Sharma, Amar Deep, Sgodda, Malte, Zaehres, Holm, Bleidissel, Martina, Greber, Boris, Gentile, Luca, Han, Dong Wook, Rudolph, Cornelia, Steinemann, Doris, Schambach, Axel, Ott, Michael, Schöler, Hans R, Cantz, Tobias
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.07.2011
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH⁻/⁻ mice) as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH⁻/⁻-induced pluripotent stem cells (iPS cells) as targets for gene correction in combination with the tetraploid embryo complementation method. First, after characterizing the FAH⁻/⁻ iPS cell lines, we aggregated FAH⁻/⁻-iPS cells with tetraploid embryos and obtained entirely FAH⁻/⁻-iPS cell-derived mice that were viable and exhibited the phenotype of the founding FAH⁻/⁻ mice. Then, we transduced FAH cDNA into the FAH⁻/⁻-iPS cells using a third-generation lentiviral vector to generate gene-corrected iPS cells. We could not detect any chromosomal alterations in these cells by high-resolution array CGH analysis, and after their aggregation with tetraploid embryos, we obtained fully iPS cell-derived healthy mice with an astonishing high efficiency for full-term development of up to 63.3%. The gene correction was validated functionally by the long-term survival and expansion of FAH-positive cells of these mice after withdrawal of the rescuing drug NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione). Furthermore, our results demonstrate that both a liver-specific promoter (transthyretin, TTR)-driven FAH transgene and a strong viral promoter (from spleen focus-forming virus, SFFV)-driven FAH transgene rescued the FAH-deficiency phenotypes in the mice derived from the respective gene-corrected iPS cells. In conclusion, our data demonstrate that a lentiviral gene repair strategy does not abrogate the full pluripotent potential of fibroblast-derived iPS cells, and genetic manipulation of iPS cells in combination with tetraploid embryo aggregation provides a practical and rapid approach to evaluate the efficacy of gene correction of human diseases in mouse models.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: GMW NL AS HRS TC. Performed the experiments: GMW NL IR ADS MS BG LG DWH CR DS. Analyzed the data: GMW NL IR BG LG DWH CR DS TC. Contributed reagents/materials/analysis tools: ADS MS HZ MB MO. Wrote the paper: GMW AS MO HRS TC.
ISSN:1545-7885
1544-9173
1545-7885
DOI:10.1371/journal.pbio.1001099