A Bayesian approach for analysis of ordered categorical responses subject to misclassification

Ordinal categorical responses are frequently collected in survey studies, human medicine, and animal and plant improvement programs, just to mention a few. Errors in this type of data are neither rare nor easy to detect. These errors tend to bias the inference, reduce the statistical power and ultim...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 12; p. e0208433
Main Authors Ling, Ashley, Hay, El Hamidi, Aggrey, Samuel E., Rekaya, Romdhane
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 13.12.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ordinal categorical responses are frequently collected in survey studies, human medicine, and animal and plant improvement programs, just to mention a few. Errors in this type of data are neither rare nor easy to detect. These errors tend to bias the inference, reduce the statistical power and ultimately the efficiency of the decision-making process. Contrarily to the binary situation where misclassification occurs between two response classes, noise in ordinal categorical data is more complex due to the increased number of categories, diversity and asymmetry of errors. Although several approaches have been presented for dealing with misclassification in binary data, only limited practical methods have been proposed to analyze noisy categorical responses. A latent variable model implemented within a Bayesian framework was proposed to analyze ordinal categorical data subject to misclassification using simulated and real datasets. The simulated scenario consisted of a discrete response with three categories and a symmetric error rate of 5% between any two classes. The real data consisted of calving ease records of beef cows. Using real and simulated data, ignoring misclassification resulted in substantial bias in the estimation of genetic parameters and reduction of the accuracy of predicted breeding values. Using our proposed approach, a significant reduction in bias and increase in accuracy ranging from 11% to 17% was observed. Furthermore, most of the misclassified observations (in the simulated data) were identified with a substantially higher probability. Similar results were observed for a scenario with asymmetric misclassification. While the extension to traits with more categories between adjacent classes is straightforward, it could be computationally costly. For traits with high heritability, the performance of the methodology would be expected to improve.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0208433