Functionally distinct subgroups of oligodendrocyte precursor cells integrate neural activity and execute myelin formation

Recent reports have revealed that oligodendrocyte precursor cells (OPCs) are heterogeneous. It remains unclear whether such heterogeneity reflects different subtypes of cells with distinct functions or instead reflects transiently acquired states of cells with the same function. By integrating linea...

Full description

Saved in:
Bibliographic Details
Published inNature neuroscience Vol. 23; no. 3; pp. 363 - 374
Main Authors Marisca, Roberta, Hoche, Tobias, Agirre, Eneritz, Hoodless, Laura Jane, Barkey, Wenke, Auer, Franziska, Castelo-Branco, Gonçalo, Czopka, Tim
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.03.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent reports have revealed that oligodendrocyte precursor cells (OPCs) are heterogeneous. It remains unclear whether such heterogeneity reflects different subtypes of cells with distinct functions or instead reflects transiently acquired states of cells with the same function. By integrating lineage formation of individual OPC clones, single-cell transcriptomics, calcium imaging and neural activity manipulation, we show that OPCs in the zebrafish spinal cord can be divided into two functionally distinct groups. One subgroup forms elaborate networks of processes and exhibits a high degree of calcium signaling, but infrequently differentiates despite contact with permissive axons. Instead, these OPCs divide in an activity- and calcium-dependent manner to produce another subgroup, with higher process motility and less calcium signaling and that readily differentiates. Our data show that OPC subgroups are functionally diverse in their response to neurons and that activity regulates the proliferation of a subset of OPCs that is distinct from the cells that generate differentiated oligodendrocytes. Oligodendrocyte precursor cells divide or differentiate in response to external stimuli to control their numbers and to form new myelin. Using zebrafish, we show that these two functions are accomplished by distinct subgroups of cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1097-6256
1546-1726
1546-1726
DOI:10.1038/s41593-019-0581-2