A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger

Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 11; no. 11; p. e0165755
Main Authors Paege, Norman, Jung, Sascha, Schäpe, Paul, Müller-Hagen, Dirk, Ouedraogo, Jean-Paul, Heiderich, Caroline, Jedamzick, Johanna, Nitsche, Benjamin M, van den Hondel, Cees A, Ram, Arthur F, Meyer, Vera
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 11.11.2016
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes. Its expression profile coincides with early starvation response and parallels with genes involved in nutrient mobilization and autophagy. Using fluorescence- and luciferase reporter strains we demonstrated that the anafp promoter is active in highly vacuolated compartments and foraging hyphal cells during carbon starvation with CreA and FlbA, but not BrlA, as most likely regulators of anafp. A co-expression network analysis supported by luciferase-based reporter assays uncovered that anafp expression is embedded in several cellular processes including allorecognition, osmotic and oxidative stress survival, development, secondary metabolism and autophagy, and predicted StuA and VelC as additional regulators. The transcriptomic resources available for A. niger provide unparalleled resources to investigate the function of proteins. Our work illustrates how transcriptomic meta-analyses can lead to hypotheses regarding protein function and predict a role for AnAFP during slow growth, allorecognition, asexual development and nutrient recycling of A. niger and propose that it interacts with the autophagic machinery to enable these processes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceptualization: VM AR CAH. Data curation: PS. Formal analysis: NP SJ PS DMH JPO CH JJ BMN VM CAH. Funding acquisition: VM. Investigation: NP SJ PS DMH JPO CH JJ BMN. Methodology: NP SJ PS DMH JPO CH JJ BMN. Project administration: VM. Resources: VM AR. Software: PS BMN. Supervision: VM SJ. Validation: VM. Visualization: SJ. Writing – original draft: VM SJ. Writing – review & editing: VM SJ.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0165755