Evolutionary Dynamics of Human Rotaviruses: Balancing Reassortment with Preferred Genome Constellations

Group A human rotaviruses (RVs) are a major cause of severe gastroenteritis in infants and young children. Yet, aside from the genes encoding serotype antigens (VP7; G-type and VP4; P-type), little is known about the genetic make-up of emerging and endemic human RV strains. To gain insight into the...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 5; no. 10; p. e1000634
Main Authors McDonald, Sarah M., Matthijnssens, Jelle, McAllen, John K., Hine, Erin, Overton, Larry, Wang, Shiliang, Lemey, Philippe, Zeller, Mark, Van Ranst, Marc, Spiro, David J., Patton, John T.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.10.2009
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Group A human rotaviruses (RVs) are a major cause of severe gastroenteritis in infants and young children. Yet, aside from the genes encoding serotype antigens (VP7; G-type and VP4; P-type), little is known about the genetic make-up of emerging and endemic human RV strains. To gain insight into the diversity and evolution of RVs circulating at a single location over a period of time, we sequenced the eleven-segmented, double-stranded RNA genomes of fifty-one G3P[8] strains collected from 1974 to 1991 at Children's Hospital National Medical Center, Washington, D. C. During this period, G1P[8] strains typically dominated, comprising on average 56% of RV infections each year in hospitalized children. A notable exception was in the 1976 and 1991 winter seasons when the incidence of G1P[8] infections decreased dramatically, a trend that correlated with a significant increase in G3P[8] infections. Our sequence analysis indicates that the 1976 season was characterized by the presence of several genetically distinct, co-circulating clades of G3P[8] viruses, which contained minor but significant differences in their encoded proteins. These 1976 lineages did not readily exchange gene segments with each other, but instead remained stable over the course of the season. In contrast, the 1991 season contained a single major clade, whose genome constellation was similar to one of the 1976 clades. The 1991 clade may have gained a fitness advantage after reassorting with as of yet unidentified RV strain(s). This study reveals for the first time that genetically distinct RV clades of the same G/P-type can co-circulate and cause disease. The findings from this study also suggest that, although gene segment exchange occurs, most reassortant strains are replaced over time by lineages with preferred genome constellations. Elucidation of the selective pressures that favor maintenance of RVs with certain sets of genes may be necessary to anticipate future vaccine needs.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Conceived and designed the experiments: JTP. Performed the experiments: JKM EH LO SW. Analyzed the data: SMM JM PL MZ MVR JTP. Contributed reagents/materials/analysis tools: JKM EH LO SW DJS JTP. Wrote the paper: SMM JTP.
ISSN:1553-7374
1553-7366
1553-7374
DOI:10.1371/journal.ppat.1000634