Evidence for Sub-Haplogroup H5 of Mitochondrial DNA as a Risk Factor for Late Onset Alzheimer's Disease

Alzheimer's Disease (AD) is the most common neurodegenerative disease and the leading cause of dementia among senile subjects. It has been proposed that AD can be caused by defects in mitochondrial oxidative phosphorylation. Given the fundamental contribution of the mitochondrial genome (mtDNA)...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 5; no. 8; p. e12037
Main Authors Santoro, Aurelia, Balbi, Valentina, Balducci, Elisa, Pirazzini, Chiara, Rosini, Francesca, Tavano, Francesca, Achilli, Alessandro, Siviero, Paola, Minicuci, Nadia, Bellavista, Elena, Mishto, Michele, Salvioli, Stefano, Marchegiani, Francesca, Cardelli, Maurizio, Olivieri, Fabiola, Nacmias, Benedetta, Chiamenti, Andrea Maria, Benussi, Luisa, Ghidoni, Roberta, Rose, Giuseppina, Gabelli, Carlo, Binetti, Giuliano, Sorbi, Sandro, Crepaldi, Gaetano, Passarino, Giuseppe, Torroni, Antonio, Franceschi, Claudio
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 06.08.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Alzheimer's Disease (AD) is the most common neurodegenerative disease and the leading cause of dementia among senile subjects. It has been proposed that AD can be caused by defects in mitochondrial oxidative phosphorylation. Given the fundamental contribution of the mitochondrial genome (mtDNA) for the respiratory chain, there have been a number of studies investigating the association between mtDNA inherited variants and multifactorial diseases, however no general consensus has been reached yet on the correlation between mtDNA haplogroups and AD. We applied for the first time a high resolution analysis (sequencing of displacement loop and restriction analysis of specific markers in the coding region of mtDNA) to investigate the possible association between mtDNA-inherited sequence variation and AD in 936 AD patients and 776 cognitively assessed normal controls from central and northern Italy. Among over 40 mtDNA sub-haplogroups analysed, we found that sub-haplogroup H5 is a risk factor for AD (OR=1.85, 95% CI:1.04-3.23) in particular for females (OR=2.19, 95% CI:1.06-4.51) and independently from the APOE genotype. Multivariate logistic regression revealed an interaction between H5 and age. When the whole sample is considered, the H5a subgroup of molecules, harboring the 4336 transition in the tRNAGln gene, already associated to AD in early studies, was about threefold more represented in AD patients than in controls (2.0% vs 0.8%; p=0.031), and it might account for the increased frequency of H5 in AD patients (4.2% vs 2.3%). The complete re-sequencing of the 56 mtDNAs belonging to H5 revealed that AD patients showed a trend towards a higher number (p=0.052) of sporadic mutations in tRNA and rRNA genes when compared with controls. Our results indicate that high resolution analysis of inherited mtDNA sequence variation can help in identifying both ancient polymorphisms defining sub-haplogroups and the accumulation of sporadic mutations associated with complex traits such as AD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: AS AT CF. Performed the experiments: AS EB CP FR FT. Analyzed the data: AS VB EB PS NM GR GP. Contributed reagents/materials/analysis tools: AS AA EB MM SS FM MC FO BN AMC LB RG CG GB SS GC. Wrote the paper: AS VB GR AT CF.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0012037