Innate immune responses of Drosophila melanogaster are altered by spaceflight
Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, a...
Saved in:
Published in | PloS one Vol. 6; no. 1; p. e15361 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
11.01.2011
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Current address: Department of Biological Research, Microfluidic Systems, Fremont, California, United States of America Current address: JMP Business Unit, SAS Institute, San Francisco, California, United States of America Conceived and designed the experiments: SB MES TFF OM. Performed the experiments: OM MPL MES EL LAH SB. Analyzed the data: OM MPL MES LAH AS HN SB. Contributed reagents/materials/analysis tools: SB OM LAH AS. Wrote the paper: OM MPL AS HN SB. Obtained permission for use of transgenic line: MES SB. Current address: Advanced Technology, The Clorox Company, Pleasanton, California, United States of America |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0015361 |