The role of gap phase processes in the biomass dynamics of tropical forests

The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. B, Biological sciences Vol. 274; no. 1627; pp. 2857 - 2864
Main Authors Feeley, Kenneth J, Davies, Stuart J, Ashton, Peter S, Bunyavejchewin, Sarayudh, Nur Supardi, M.N, Kassim, Abd Rahman, Tan, Sylvester, Chave, Jérôme
Format Journal Article
LanguageEnglish
Published London The Royal Society 22.11.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four 'old-growth' tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr−1) and decreased at HKK (−0.56% yr−1) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget.
Bibliography:href:2857.pdf
istex:DD4B204EC164C09F3CBC910D3C98F9743435C4D7
ark:/67375/V84-XQ6V2B57-Z
ArticleID:rspb20070954
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0962-8452
1471-2954
DOI:10.1098/rspb.2007.0954