Gene expression deficits in pontine locus coeruleus astrocytes in men with major depressive disorder

Background Norepinephrine and glutamate are among several neurotransmitters implicated in the neuropathology of major depressive disorder (MDD). Glia deficits have also been demonstrated in people with MDD, and glia are critical modulators of central glutamatergic transmission. We studied glia in me...

Full description

Saved in:
Bibliographic Details
Published inJournal of psychiatry & neuroscience Vol. 38; no. 4; pp. 276 - 284
Main Authors Chandley, Michelle J., PhD, Szebeni, Katalin, MD, Szebeni, Attila, PhD, Crawford, Jessica, BSc, Ordway, Gregory A., PhD, Stockmeier, Craig A., PhD, Miguel-Hidalgo, Jose Javier, PhD, Turecki, Gustavo, MD, PhD
Format Journal Article
LanguageFrench
English
Published Ottawa, ON Canadian Medical Association 01.07.2013
Joule Inc
CMA Impact, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background Norepinephrine and glutamate are among several neurotransmitters implicated in the neuropathology of major depressive disorder (MDD). Glia deficits have also been demonstrated in people with MDD, and glia are critical modulators of central glutamatergic transmission. We studied glia in men with MDD in the region of the brain (locus coeruleus; LC) where noradrenergic neuronal cell bodies reside and receive glutamatergic input. Methods The expression of 3 glutamate-related genes ( SLC1A3 , SLC1A2 , GLUL ) concentrated in glia and a glia gene ( GFAP ) were measured in postmortem tissues from men with MDD and from paired psychiatrically healthy controls. Initial gene expression analysis of RNA isolated from homogenized tissue ( n = 9–10 pairs) containing the LC were followed by detailed analysis of gene expressions in astrocytes and oligodendrocytes ( n = 6–7 pairs) laser captured from the LC region. We assessed protein changes in GFAP using immunohistochemistry and immunoblotting ( n = 7–14 pairs). Results Astrocytes, but not oligodendrocytes, demonstrated robust reductions in the expression of SLC1A3 and SLC1A2, whereas GLUL expression was unchanged. GFAP expression was lower in astrocytes, and we confirmed reduced GFAP protein in the LC using immunostaining methods. Limitations Reduced expression of protein products of SLC1A3 and SLC1A2 could not be confirmed because of insufficient amounts of LC tissue for these assays. Whether gene expression abnormalities were associated with only MDD and not with suicide could not be confirmed because most of the decedents who had MDD died by suicide. Conclusion Major depressive disorder is associated with unhealthy astrocytes in the noradrenergic LC, characterized here by a reduction in astrocyte glutamate transporter expression. These findings suggest that increased glutamatergic activity in the LC occurs in men with MDD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1180-4882
1488-2434
DOI:10.1503/jpn.120110