Novel polyomaviruses of nonhuman primates: genetic and serological predictors for the existence of multiple unknown polyomaviruses within the human population

Polyomaviruses are a family of small non-enveloped DNA viruses that encode oncogenes and have been associated, to greater or lesser extent, with human disease and cancer. Currently, twelve polyomaviruses are known to circulate within the human population. To further examine the diversity of human po...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 9; no. 6; p. e1003429
Main Authors Scuda, Nelly, Madinda, Nadege Freda, Akoua-Koffi, Chantal, Adjogoua, Edgard Valerie, Wevers, Diana, Hofmann, Jörg, Cameron, Kenneth N, Leendertz, Siv Aina J, Couacy-Hymann, Emmanuel, Robbins, Martha, Boesch, Christophe, Jarvis, Michael A, Moens, Ugo, Mugisha, Lawrence, Calvignac-Spencer, Sébastien, Leendertz, Fabian H, Ehlers, Bernhard
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.06.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Polyomaviruses are a family of small non-enveloped DNA viruses that encode oncogenes and have been associated, to greater or lesser extent, with human disease and cancer. Currently, twelve polyomaviruses are known to circulate within the human population. To further examine the diversity of human polyomaviruses, we have utilized a combinatorial approach comprised of initial degenerate primer-based PCR identification and phylogenetic analysis of nonhuman primate (NHP) polyomavirus species, followed by polyomavirus-specific serological analysis of human sera. Using this approach we identified twenty novel NHP polyomaviruses: nine in great apes (six in chimpanzees, two in gorillas and one in orangutan), five in Old World monkeys and six in New World monkeys. Phylogenetic analysis indicated that only four of the nine chimpanzee polyomaviruses (six novel and three previously identified) had known close human counterparts. To determine whether the remaining chimpanzee polyomaviruses had potential human counterparts, the major viral capsid proteins (VP1) of four chimpanzee polyomaviruses were expressed in E. coli for use as antigens in enzyme-linked immunoassay (ELISA). Human serum/plasma samples from both Côte d'Ivoire and Germany showed frequent seropositivity for the four viruses. Antibody pre-adsorption-based ELISA excluded the possibility that reactivities resulted from binding to known human polyomaviruses. Together, these results support the existence of additional polyomaviruses circulating within the human population that are genetically and serologically related to existing chimpanzee polyomaviruses.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Conceived and designed the experiments: NS NFM CAK EVA DW JH SAJL ECH CB MAJ SCS FHL BE. Performed the experiments: NS NFM DW SCS BE. Analyzed the data: NS NFM CAK EVA DW JH KNC SAJL ECH MR CB MAJ LM UM SCS FHL BE. Contributed reagents/materials/analysis tools: NFM CAK EVA DW JH KNC SAJL LM ECH MR CB SCS FHL BE. Wrote the paper: BE NS MAJ FHL SCS SAJL UM.
Current address: Wildlife Conservation Society, New York, New York, United States of America.
The authors have declared that no competing interests exist.
ISSN:1553-7374
1553-7366
1553-7374
DOI:10.1371/journal.ppat.1003429