Early exposure to UV radiation overshadowed by precipitation and litter quality as drivers of decomposition in the northern Chihuahuan Desert

Dryland ecosystems cover nearly 45% of the Earth's land area and account for large proportions of terrestrial net primary production and carbon pools. However, predicting rates of plant litter decomposition in these vast ecosystems has proven challenging due to their distinctly dry and often ho...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 2; p. e0210470
Main Authors Hewins, Daniel B, Lee, Hanna, Barnes, Paul W, McDowell, Nathan G, Pockman, William T, Rahn, Thom, Throop, Heather L
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 04.02.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Dryland ecosystems cover nearly 45% of the Earth's land area and account for large proportions of terrestrial net primary production and carbon pools. However, predicting rates of plant litter decomposition in these vast ecosystems has proven challenging due to their distinctly dry and often hot climate regimes, and potentially unique physical drivers of decomposition. In this study, we elucidated the role of photopriming, i.e. exposure of standing dead leaf litter to solar radiation prior to litter drop that would chemically change litter and enhance biotic decay of fallen litter. We exposed litter substrates to three different UV radiation treatments simulating three-months of UV radiation exposure in southern New Mexico: no light, UVA+UVB+Visible, and UVA+Visible. There were three litter types: mesquite leaflets (Prosopis glandulosa, litter with high nitrogen (N) concentration), filter paper (pure cellulose), and basswood (Tilia spp, high lignin concentration). We deployed the photoprimed litter in the field within a large scale precipitation manipulation experiment: ∼50% precipitation reduction, ∼150% precipitation addition, and ambient control. Our results revealed the importance of litter substrate, particularly N content, for overall decomposition in drylands, as neither filter paper nor basswood exhibited measurable mass loss over the course of the year-long study, while high N-containing mesquite litter exhibited potential mass loss. We saw no effect of photopriming on subsequent microbial decay. We did observe a precipitation effect on mesquite where the rate of decay was more rapid in ambient and precipitation addition treatments than in the drought treatment. Overall, we found that precipitation and N played a critical role in litter mass loss. In contrast, photopriming had no detected effects on mass loss over the course of our year-long study. These results underpin the importance of biotic-driven decomposition, even in the presence of photopriming, for understanding litter decomposition and biogeochemical cycles in drylands.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AC05-76RL01830
PNNL-SA-140950
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0210470