Nanocomposite solid polymer electrolytes based on polyethylene oxide, modified nanoclay, and tetraethylammonium tetrafluoroborate for application in solid-state supercapacitor

Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and tetraethylammonium tetrafluoroborate (TEABF4) salt. The concentration of the salt has been varied in the respective SPE, wherein PEO/MNclay ratio was kept con...

Full description

Saved in:
Bibliographic Details
Published inPolymer engineering and science Vol. 55; no. 7; pp. 1536 - 1545
Main Authors Sivaraman, Patchaiyappan, Shashidhara, Kannakaje, Thakur, Avinash P., Samui, Asit B., Bhattacharyya, Arup R.
Format Journal Article
LanguageEnglish
Published Newtown Blackwell Publishing Ltd 01.07.2015
Society of Plastics Engineers, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and tetraethylammonium tetrafluoroborate (TEABF4) salt. The concentration of the salt has been varied in the respective SPE, wherein PEO/MNclay ratio was kept constant. It has been proposed that three types of complex formation could be operative in the SPEs due to the interactions among PEO, MNclay, and the salt. The complex formation mechanism has been postulated on the basis of X‐ray diffraction (XRD) analysis, transmission electron microscopic (TEM) observation, differential scanning calorimetric (DSC) analysis, and polarized optical microscopic (POM) observation. ‘Complex 1’ and ‘complex 3’ formation could be involved in the crystalline phase as indicated by DSC and XRD analyses, whereas ‘complex 2’ formation might be restricted in the amorphous phase as suggested by TEM observation. The ionic conductivity of the SPEs has been correlated with the results obtained from XRD, DSC, and POM analyses. The formation of complex 1 and complex 2 could be responsible for the increase in the ionic conductivity, whereas complex 3 formation might decrease the ionic conductivity. An activated carbon‐based supercapacitor has been fabricated using SPEs and characterized by cyclic voltammetry, galvanostatic ‘charge–discharge’ behavior, and impedance spectroscopic analysis. POLYM. ENG. SCI., 55:1536–1545, 2015. © 2015 Society of Plastics Engineers
AbstractList Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and tetraethylammonium tetrafluoroborate (TEABF 4 ) salt. The concentration of the salt has been varied in the respective SPE, wherein PEO/MNclay ratio was kept constant. It has been proposed that three types of complex formation could be operative in the SPEs due to the interactions among PEO, MNclay, and the salt. The complex formation mechanism has been postulated on the basis of X‐ray diffraction (XRD) analysis, transmission electron microscopic (TEM) observation, differential scanning calorimetric (DSC) analysis, and polarized optical microscopic (POM) observation. ‘Complex 1’ and ‘complex 3’ formation could be involved in the crystalline phase as indicated by DSC and XRD analyses, whereas ‘complex 2’ formation might be restricted in the amorphous phase as suggested by TEM observation. The ionic conductivity of the SPEs has been correlated with the results obtained from XRD, DSC, and POM analyses. The formation of complex 1 and complex 2 could be responsible for the increase in the ionic conductivity, whereas complex 3 formation might decrease the ionic conductivity. An activated carbon‐based supercapacitor has been fabricated using SPEs and characterized by cyclic voltammetry, galvanostatic ‘charge–discharge’ behavior, and impedance spectroscopic analysis. POLYM. ENG. SCI., 55:1536–1545, 2015. © 2015 Society of Plastics Engineers
Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and tetraethylammonium tetrafluoroborate (TEABF4) salt. The concentration of the salt has been varied in the respective SPE, wherein PEO/MNclay ratio was kept constant. It has been proposed that three types of complex formation could be operative in the SPEs due to the interactions among PEO, MNclay, and the salt. The complex formation mechanism has been postulated on the basis of X-ray diffraction (XRD) analysis, transmission electron microscopic (TEM) observation, differential scanning calorimetric (DSC) analysis, and polarized optical microscopic (POM) observation. 'Complex 1' and 'complex 3' formation could be involved in the crystalline phase as indicated by DSC and XRD analyses, whereas 'complex 2' formation might be restricted in the amorphous phase as suggested by TEM observation. The ionic conductivity of the SPEs has been correlated with the results obtained from XRD, DSC, and POM analyses. The formation of complex 1 and complex 2 could be responsible for the increase in the ionic conductivity, whereas complex 3 formation might decrease the ionic conductivity. An activated carbon-based supercapacitor has been fabricated using SPEs and characterized by cyclic voltammetry, galvanostatic 'charge-discharge' behavior, and impedance spectroscopic analysis.
Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and tetraethylammonium tetrafluoroborate (TEABF4) salt. The concentration of the salt has been varied in the respective SPE, wherein PEO/MNclay ratio was kept constant. It has been proposed that three types of complex formation could be operative in the SPEs due to the interactions among PEO, MNclay, and the salt. The complex formation mechanism has been postulated on the basis of X‐ray diffraction (XRD) analysis, transmission electron microscopic (TEM) observation, differential scanning calorimetric (DSC) analysis, and polarized optical microscopic (POM) observation. ‘Complex 1’ and ‘complex 3’ formation could be involved in the crystalline phase as indicated by DSC and XRD analyses, whereas ‘complex 2’ formation might be restricted in the amorphous phase as suggested by TEM observation. The ionic conductivity of the SPEs has been correlated with the results obtained from XRD, DSC, and POM analyses. The formation of complex 1 and complex 2 could be responsible for the increase in the ionic conductivity, whereas complex 3 formation might decrease the ionic conductivity. An activated carbon‐based supercapacitor has been fabricated using SPEs and characterized by cyclic voltammetry, galvanostatic ‘charge–discharge’ behavior, and impedance spectroscopic analysis. POLYM. ENG. SCI., 55:1536–1545, 2015. © 2015 Society of Plastics Engineers
Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and tetraethylammonium tetrafluoroborate (TEABF sub(4)) salt. The concentration of the salt has been varied in the respective SPE, wherein PEO/MNclay ratio was kept constant. It has been proposed that three types of complex formation could be operative in the SPEs due to the interactions among PEO, MNclay, and the salt. The complex formation mechanism has been postulated on the basis of X-ray diffraction (XRD) analysis, transmission electron microscopic (TEM) observation, differential scanning calorimetric (DSC) analysis, and polarized optical microscopic (POM) observation. 'Complex 1' and 'complex 3' formation could be involved in the crystalline phase as indicated by DSC and XRD analyses, whereas 'complex 2' formation might be restricted in the amorphous phase as suggested by TEM observation. The ionic conductivity of the SPEs has been correlated with the results obtained from XRD, DSC, and POM analyses. The formation of complex 1 and complex 2 could be responsible for the increase in the ionic conductivity, whereas complex 3 formation might decrease the ionic conductivity. An activated carbon-based supercapacitor has been fabricated using SPEs and characterized by cyclic voltammetry, galvanostatic 'charge-discharge' behavior, and impedance spectroscopic analysis. POLYM. ENG. SCI., 55:1536-1545, 2015. copyright 2015 Society of Plastics Engineers
Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and tetraethylammonium tetrafluoroborate ([TEABF.sub.4]) salt. The concentration of the salt has been varied in the respective SPE, wherein PEO/ MNclay ratio was kept constant. It has been proposed that three types of complex formation could be operative in the SPEs due to the interactions among PEO, MNclay, and the salt. The complex formation mechanism has been postulated on the basis of X-ray diffraction (XRD) analysis, transmission electron microscopic (TEM) observation, differential scanning calorimetric (DSC) analysis, and polarized optical microscopic (POM) observation. 'Complex 1' and 'complex 3' formation could be involved in the crystalline phase as indicated by DSC and XRD analyses, whereas 'complex 2' formation might be restricted in the amorphous phase as suggested by TEM observation. The ionic conductivity of the SPEs has been correlated with the results obtained from XRD, DSC, and POM analyses. The formation of complex 1 and complex 2 could be responsible for the increase in the ionic conductivity, whereas complex 3 formation might decrease the ionic conductivity. An activated carbon-based supercapacitor has been fabricated using SPEs and characterized by cyclic voltammetry, galvanostatic 'charge-discharge' behavior, and impedance spectroscopic analysis.
Audience Academic
Author Sivaraman, Patchaiyappan
Thakur, Avinash P.
Shashidhara, Kannakaje
Samui, Asit B.
Bhattacharyya, Arup R.
Author_xml – sequence: 1
  givenname: Patchaiyappan
  surname: Sivaraman
  fullname: Sivaraman, Patchaiyappan
  organization: Naval Materials Research Laboratory, Ambernath 421506, Thane, Maharashtra, India
– sequence: 2
  givenname: Kannakaje
  surname: Shashidhara
  fullname: Shashidhara, Kannakaje
  organization: Naval Materials Research Laboratory, Ambernath 421506, Maharashtra, Thane, India
– sequence: 3
  givenname: Avinash P.
  surname: Thakur
  fullname: Thakur, Avinash P.
  organization: Naval Materials Research Laboratory, Ambernath 421506, Maharashtra, Thane, India
– sequence: 4
  givenname: Asit B.
  surname: Samui
  fullname: Samui, Asit B.
  organization: Naval Materials Research Laboratory, Ambernath 421506, Maharashtra, Thane, India
– sequence: 5
  givenname: Arup R.
  surname: Bhattacharyya
  fullname: Bhattacharyya, Arup R.
  email: arupranjan@iitb.ac.in
  organization: Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, 400076, India
BookMark eNp1kltv0zAUxyM0JLrCA98gEi8gNV0c5_o4ja1MqsplQzxajn3ceTh2sB2xfCq-Ik47LkVFlnw7v__fR8fnNDrRRkMUvUTpEqVpdtaDXmZ52hRPohkq8jrJSpyfRLM0xVmC67p-Fp06d58GFhfNLPqxodow0_XGSQ-xM0ryuDdq7MDGoIB5Gw4eXNxSBzw2ehcFfzcq0BCbB8lhEXeGSyFDXE92io6LmGoee_CW7ljadUbLodtfCTUYa1pjaXhTGBvTvleSUS-Dv9T7NBLnp7AberCM9pRJb-zz6KmgysGLx3Uefb66vL14l6zfr64vztcJq1BVJAi3oqoayhEHgVvUokpALkqeNW2eVVwgqOuyzChjLW8RNKxuWUoprgMY9ngevd779tZ8G8B50knHQCmqwQyOoCptKpxP0zx69Q96bwarQ3YElQ3KM1SW5R9qSxUQqYUJdWCTKTmfkCwvyjRQyRFqGyptqQo_LWS4PuCXR_gwOHSSHRW8ORAExsOD39LBOXJ98-mQXfzFtoOTGlyYnNzeebeXHLNm1jhnQZDeyo7akaCUTM1JQnOSXXMG9mzPfg_5jf8HyYfLzS_FY2WkCwn_VlD7lZQVrgryZbMi-O3qY3lze0XW-CccQfp1
CODEN PYESAZ
CitedBy_id crossref_primary_10_1002_pen_24549
crossref_primary_10_1002_chem_201804781
crossref_primary_10_1007_s11581_016_1946_0
crossref_primary_10_1039_C9TA01028A
crossref_primary_10_1016_j_colsurfa_2021_127239
crossref_primary_10_1016_j_jpowsour_2016_12_097
crossref_primary_10_1002_pen_24397
crossref_primary_10_1007_s11581_016_1924_6
Cites_doi 10.1016/j.jpowsour.2013.05.030
10.1016/j.electacta.2011.10.102
10.1016/0013-4686(94)80063-4
10.1149/1.1506301
10.1149/1.1433833
10.1021/cm960102h
10.1016/S0378-7753(98)00258-4
10.1016/0378-7753(94)80053-7
10.1016/j.jpowsour.2010.10.062
10.1021/cm960127g
10.1016/j.jpowsour.2007.11.060
10.1016/j.electacta.2005.02.053
10.1016/j.electacta.2004.06.018
10.1016/j.polymer.2004.11.077
10.1002/adma.19950070218
10.1016/j.electacta.2014.12.036
10.1021/jp982403f
10.1002/polb.20702
10.1002/adma.19960080104
10.1016/S0927-796X(00)00012-7
10.1016/j.jpowsour.2006.02.044
10.1149/1.1837324
10.1016/0167-2738(96)00070-7
10.1002/polb.10194
10.1016/j.jpowsour.2013.09.137
10.1149/1.1393423
10.1149/1.1403728
10.1149/1.2213357
10.1016/S0013-4686(02)00325-0
10.1149/1.2054995
10.1002/polb.20324
10.1002/adma.19900021108
10.1021/ja029326t
10.1016/S0378-7753(03)00272-6
10.1016/j.electacta.2005.02.098
10.1016/j.jpowsour.2014.11.047
10.1007/978-94-011-1568-1_8
10.1016/S0378-7753(03)00182-4
10.1016/S0032-3861(01)00520-1
10.1016/S0032-3861(02)00230-6
10.1007/s10008-012-1679-6
ContentType Journal Article
Copyright 2015 Society of Plastics Engineers
COPYRIGHT 2015 Society of Plastics Engineers, Inc.
Copyright Blackwell Publishing Ltd. Jul 2015
Copyright_xml – notice: 2015 Society of Plastics Engineers
– notice: COPYRIGHT 2015 Society of Plastics Engineers, Inc.
– notice: Copyright Blackwell Publishing Ltd. Jul 2015
DBID BSCLL
AAYXX
CITATION
N95
XI7
ISR
7SR
8FD
JG9
7U5
L7M
DOI 10.1002/pen.24095
DatabaseName Istex
CrossRef
Gale Business: Insights
Business Insights: Essentials
Gale In Context: Science
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Materials Research Database

Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1548-2634
EndPage 1545
ExternalDocumentID 3727756731
A421624560
10_1002_pen_24095
PEN24095
ark_67375_WNG_3DGQ6STF_L
Genre article
Feature
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID -~X
.-4
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
88I
8AF
8FE
8FG
8G5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDEX
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABTAH
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AIXEN
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAAKF
BAFTC
BDRZF
BENPR
BES
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IAO
ICW
IEA
IOF
ISR
ITC
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M2Q
M6K
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N95
N9A
NDZJH
NEJ
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
P62
PALCI
PDBOC
PQQKQ
PROAC
PTHSS
PV9
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWL
RWM
RX1
RXW
RYL
RZL
S0X
SAMSI
SUPJJ
TUS
U5U
UB1
V2E
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XI7
XV2
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
ACXME
ABHUG
ACSMX
ADAWD
ADDAD
AFVGU
AGJLS
7SR
8FD
JG9
7U5
L7M
ID FETCH-LOGICAL-c7175-13bf779ad1def3b1b17fe4f6d29b427df1e88662accbdb1e9c8bc0aa3817fc8b3
IEDL.DBID DR2
ISSN 0032-3888
IngestDate Fri Aug 16 01:54:59 EDT 2024
Thu Oct 10 18:15:32 EDT 2024
Thu Feb 22 23:59:37 EST 2024
Fri Jan 12 01:48:10 EST 2024
Wed Jan 10 04:17:19 EST 2024
Thu Aug 01 20:18:27 EDT 2024
Tue Oct 08 14:28:33 EDT 2024
Fri Aug 23 00:39:14 EDT 2024
Sat Aug 24 00:55:21 EDT 2024
Wed Oct 30 09:50:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c7175-13bf779ad1def3b1b17fe4f6d29b427df1e88662accbdb1e9c8bc0aa3817fc8b3
Notes istex:55470F4C9501E61CF2CAA9484E995B8357D5797B
ark:/67375/WNG-3DGQ6STF-L
ArticleID:PEN24095
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1691421666
PQPubID 41843
PageCount 10
ParticipantIDs proquest_miscellaneous_1709734097
proquest_journals_1691421666
gale_infotracmisc_A421624560
gale_infotracgeneralonefile_A421624560
gale_infotracacademiconefile_A421624560
gale_incontextgauss_ISR_A421624560
gale_businessinsightsgauss_A421624560
crossref_primary_10_1002_pen_24095
wiley_primary_10_1002_pen_24095_PEN24095
istex_primary_ark_67375_WNG_3DGQ6STF_L
PublicationCentury 2000
PublicationDate July 2015
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: July 2015
PublicationDecade 2010
PublicationPlace Newtown
PublicationPlace_xml – name: Newtown
PublicationTitle Polymer engineering and science
PublicationTitleAlternate Polym Eng Sci
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Society of Plastics Engineers, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Society of Plastics Engineers, Inc
References X. Liu and T. Osaka, J. Electrochem. Soc., 143, 3982 (1996).
R. Krishnamoorti, R.A. Vaia, and E.P. Giannelis, Chem. Mater., 8, 1728 (1996).
L. Fan, C.-W. Nan, and Z. Dang, Electrochim. Acta, 47, 3541 (2002).
M. Marzantowicz, J.R. Dygas, F. Krok, J.L. Nowinski, A. Tomaszewska, Z. Florjanczyk, and E. Zygadlo-Monikowska, J. Power Sources, 159, 420 (2006).
F. Croce, L. Persi, B. Scrosati, E. Plichta, and M.A. Hendrickson, J. Electrochem. Soc., 149, A212 (2002).
C.-S. Liao and W.-B. Ye, Electrochim. Acta, 49, 4993 (2004).
S. Kim, E.-J. Hwang, Y. Jung, M. Han, and S.-J. Park, Colloids Surf. A, 313, 216 (2008).
R.S. Hastak, P. Sivaraman, D.D. Potphode, K. Shashidhara, and A.B. Samui, Electrochim. Acta, 59, 296 (2012).
E.P. Giannelis, Adv. Mater., 8, 29 (1996).
B. Scrosati, F. Croce, and L. Persi, J. Electrochem. Soc., 147, 1718 (2000).
R.A. Vaia, K.D. Jandt, E.J. Kramer, and E.P. Giannelis, Chem. Mater., 8, 2628 (1996).
S. Ketabi and K. Lian, Electrochim. Acta, 154, 404 (2015).
Z. Wen, Z. Gu, T. Itoh, A. Lin, and O. Yamamoto, J. Power Sources, 119-121, 427 (2003).
Z. Stoeva, I. Martin-Litas, E. Staunton, Y.G. Andreev, and P.G. Bruce, J. Am. Chem. Soc., 125, 4619 (2003).
P. Sivaraman, A. Thakur, R.K. Kushwaha, D. Ratna, and A.B. Samui, Electrochem. Solid-State Lett., 9, A435 (2006).
B.E. Conway, Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum, New York (1999).
W. Loyens, J. Patric, and F.H.J. Maurer, Polymer, 46, 903 (2005).
A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, and J.P. Ferrasis, J. Power Sources, 47, 89 (1994).
Y.L. Ni'Mah, M.-Y. Cheng, J.H. Cheng, and J. Rick, J. Power Sources, 278, 375 (2015).
J.Y. Kim and I.J. Chang, J. Electrochem. Soc., 149, A1376 (2002).
M. Ishikawa, M. Morita, M. Ihara, and Y. Matsuda, J. Electrochem. Soc., 141, 1730 (1994).
H.-W. Chen, C.-Y. Chiu, and F.-C. Chang, J. Polym. Sci. Part B: Polym. Phys., 40, 1342 (2002).
S.K. Srivastava, M. Pramanik, and H. Arharya, J. Polym. Sci. Part B: Polym. Phys., 44, 471 (2006).
Z. Shen, G.P. Simon, and Y.B. Cheng, Polymer, 43, 4251 (2002).
E. Ruitz-Hitzky, P. Aranda, B. Casal, and J.C. Galvan, Adv. Mater., 7, 180 (1995).
H.-W. Chen and F.-C. Chang, Polymer, 42, 9763 (2001).
J.S. Moreno, M. Armand, M.B. Berman, S.G. Greenbaum, B. Scrosati, and S. Panero, J. Power Sources, 248, 695 (2014).
A. Laforgue, P. Simon, S. Sarrasin, and J.F. Fauvarque, J. Power Sources, 80, 142 (1999).
W. Wieezorek, D. Raducha, A. Znlewska, and J.R. Stevens, J. Phys. Chem. B, 102, 8725 (1998).
M. Marzantowicz, J.R. Dygas, F. Krok, A. Lasinska, Z. Florjanczyk, and E. Zygadlo-Monikowska, Electrochim. Acta, 51, 1713 (2006).
Y.H. Liao, X.P. Li, C.H. Fu, R. Xu, L. Zhou, C.L. Tan, S.J. Hu, and W.S. Li, J. Power Sources, 196, 2115 (2011).
C. Yuan, J. Li, P. Han, Y. Lai, Z. Zhang, and J. Liu, J. Power Sources, 240, 653 (2013).
E. Ruitz-Hitzky and P. Aranda, Adv. Mater., 2, 545 (1990).
M. Alexandre and P. Dubois, Mater. Sci. Eng. R, 28, 1 (2000).
A. Clemente, S. Panero, E. Spila, and B. Scrosati, Solid State Ionics, 85, 273 (1996).
R.L. Lavall, R.S. Borges, H.D.R. Calado, C. Welter, J.P.C. Trigueiro, J. Rieumont, B.R.A. Neves, and G.G. Silva, J. Power Sources, 177, 652 (2008).
B. Scrosati, Applications of Electroactive Polymers, 1st ed., Chapman & Hall, London (1993).
A. Rudge, I. Raistrick, S. Gottesfield, and J.P. Ferraris, Electrochim. Acta, 39, 273 (1994).
R.S. Hastak, P. Sivaraman, D.D. Potphode, K. Shashidhara, and A.B. Samui, J. Solid State Electrochem., 16, 3215 (2012).
S.C. Tjong and S.P. Bao, J. Polym. Sci. Part B: Polym. Phys., 43, 253 (2005).
G.B. Appetecchi, W. Henderson, P. Villano, M. Berrettoni, and S. Passerini, J. Electrochem. Soc., 148, A1171 (2001).
M. Marzantowicz, J.R. Dygas, F. Krok, A. Lasinska, Z. Florjanczyk, E. Zygadlo-Monkowska, and A. Affek, Electrochim. Acta, 50, 3969 (2005).
G. Sandi, K.A. Carrado, H. Joachin, W. Lu, and J. Prakash, J. Power Sources, 119, 492 (2003).
2003; 119
2000; 28
2006; 51
2004; 49
2006; 9
1994; 47
2005; 43
2013; 240
1993
1996; 143
2012; 16
2002
2012; 59
2011; 196
2006; 159
1999; 80
2001; 148
2005; 46
2001; 42
1995; 7
1999
1990; 2
2002; 47
2014; 248
2000; 147
2006; 44
2003; 119–121
2002; 40
2015; 278
1994; 141
2002; 43
2015; 154
1996; 85
2002; 149
2008; 216
1994; 39
2005; 50
2008; 177
2003; 125
1998; 102
1996; 8
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Kim S. (e_1_2_6_35_1) 2008; 216
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
Conway B.E. (e_1_2_6_41_1) 1999
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_40_1
Scrosati B. (e_1_2_6_3_1) 2002
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 9
  start-page: A435
  year: 2006
  publication-title: Electrochem. Solid‐State Lett.
– volume: 177
  start-page: 652
  year: 2008
  publication-title: J. Power Sources
– volume: 102
  start-page: 8725
  year: 1998
  publication-title: J. Phys. Chem. B
– volume: 159
  start-page: 420
  year: 2006
  publication-title: J. Power Sources
– volume: 143
  start-page: 3982
  year: 1996
  publication-title: J. Electrochem. Soc.
– volume: 43
  start-page: 253
  year: 2005
  publication-title: J. Polym. Sci. Part B: Polym. Phys.
– volume: 7
  start-page: 180
  year: 1995
  publication-title: Adv. Mater.
– volume: 49
  start-page: 4993
  year: 2004
  publication-title: Electrochim. Acta
– volume: 141
  start-page: 1730
  year: 1994
  publication-title: J. Electrochem. Soc.
– volume: 80
  start-page: 142
  year: 1999
  publication-title: J. Power Sources
– volume: 42
  start-page: 9763
  year: 2001
  publication-title: Polymer
– volume: 149
  start-page: A212
  year: 2002
  publication-title: J. Electrochem. Soc.
– volume: 148
  start-page: A1171
  year: 2001
  publication-title: J. Electrochem. Soc.
– volume: 119–121
  start-page: 427
  year: 2003
  publication-title: J. Power Sources
– volume: 40
  start-page: 1342
  year: 2002
  publication-title: J. Polym. Sci. Part B: Polym. Phys.
– volume: 149
  start-page: A1376
  year: 2002
  publication-title: J. Electrochem. Soc.
– volume: 85
  start-page: 273
  year: 1996
  publication-title: Solid State Ionics
– volume: 16
  start-page: 3215
  year: 2012
  publication-title: J. Solid State Electrochem.
– volume: 248
  start-page: 695
  year: 2014
  publication-title: J. Power Sources
– volume: 43
  start-page: 4251
  year: 2002
  publication-title: Polymer
– volume: 50
  start-page: 3969
  year: 2005
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 2628
  year: 1996
  publication-title: Chem. Mater.
– volume: 39
  start-page: 273
  year: 1994
  publication-title: Electrochim. Acta
– volume: 47
  start-page: 89
  year: 1994
  publication-title: J. Power Sources
– volume: 47
  start-page: 3541
  year: 2002
  publication-title: Electrochim. Acta
– volume: 44
  start-page: 471
  year: 2006
  publication-title: J. Polym. Sci. Part B: Polym. Phys.
– volume: 278
  start-page: 375
  year: 2015
  publication-title: J. Power Sources
– volume: 240
  start-page: 653
  year: 2013
  publication-title: J. Power Sources
– volume: 46
  start-page: 903
  year: 2005
  publication-title: Polymer
– year: 2002
– volume: 147
  start-page: 1718
  year: 2000
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 545
  year: 1990
  publication-title: Adv. Mater.
– volume: 51
  start-page: 1713
  year: 2006
  publication-title: Electrochim. Acta
– volume: 196
  start-page: 2115
  year: 2011
  publication-title: J. Power Sources
– volume: 28
  start-page: 1
  year: 2000
  publication-title: Mater. Sci. Eng. R
– volume: 8
  start-page: 1728
  year: 1996
  publication-title: Chem. Mater.
– volume: 8
  start-page: 29
  year: 1996
  publication-title: Adv. Mater.
– volume: 154
  start-page: 404
  year: 2015
  publication-title: Electrochim. Acta
– volume: 59
  start-page: 296
  year: 2012
  publication-title: Electrochim. Acta
– year: 1993
– volume: 125
  start-page: 4619
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 216
  start-page: 313
  year: 2008
  publication-title: Colloids Surf. A
– volume: 119
  start-page: 492
  year: 2003
  publication-title: J. Power Sources
– year: 1999
– ident: e_1_2_6_39_1
  doi: 10.1016/j.jpowsour.2013.05.030
– ident: e_1_2_6_44_1
  doi: 10.1016/j.electacta.2011.10.102
– ident: e_1_2_6_24_1
  doi: 10.1016/0013-4686(94)80063-4
– volume-title: Handbook of Polymers in Electronics
  year: 2002
  ident: e_1_2_6_3_1
  contributor:
    fullname: Scrosati B.
– ident: e_1_2_6_43_1
  doi: 10.1149/1.1506301
– ident: e_1_2_6_5_1
  doi: 10.1149/1.1433833
– ident: e_1_2_6_9_1
  doi: 10.1021/cm960102h
– ident: e_1_2_6_22_1
  doi: 10.1016/S0378-7753(98)00258-4
– ident: e_1_2_6_23_1
  doi: 10.1016/0378-7753(94)80053-7
– ident: e_1_2_6_37_1
  doi: 10.1016/j.jpowsour.2010.10.062
– ident: e_1_2_6_8_1
  doi: 10.1021/cm960127g
– ident: e_1_2_6_21_1
  doi: 10.1016/j.jpowsour.2007.11.060
– ident: e_1_2_6_31_1
  doi: 10.1016/j.electacta.2005.02.053
– ident: e_1_2_6_25_1
  doi: 10.1016/j.electacta.2004.06.018
– ident: e_1_2_6_13_1
  doi: 10.1016/j.polymer.2004.11.077
– ident: e_1_2_6_11_1
  doi: 10.1002/adma.19950070218
– ident: e_1_2_6_20_1
  doi: 10.1016/j.electacta.2014.12.036
– ident: e_1_2_6_27_1
  doi: 10.1021/jp982403f
– ident: e_1_2_6_6_1
  doi: 10.1002/polb.20702
– ident: e_1_2_6_7_1
  doi: 10.1002/adma.19960080104
– ident: e_1_2_6_26_1
  doi: 10.1016/S0927-796X(00)00012-7
– ident: e_1_2_6_29_1
  doi: 10.1016/j.jpowsour.2006.02.044
– ident: e_1_2_6_18_1
  doi: 10.1149/1.1837324
– ident: e_1_2_6_42_1
  doi: 10.1016/0167-2738(96)00070-7
– ident: e_1_2_6_16_1
  doi: 10.1002/polb.10194
– ident: e_1_2_6_40_1
  doi: 10.1016/j.jpowsour.2013.09.137
– volume: 216
  start-page: 313
  year: 2008
  ident: e_1_2_6_35_1
  publication-title: Colloids Surf. A
  contributor:
    fullname: Kim S.
– ident: e_1_2_6_4_1
  doi: 10.1149/1.1393423
– ident: e_1_2_6_30_1
  doi: 10.1149/1.1403728
– ident: e_1_2_6_19_1
  doi: 10.1149/1.2213357
– ident: e_1_2_6_34_1
  doi: 10.1016/S0013-4686(02)00325-0
– ident: e_1_2_6_17_1
  doi: 10.1149/1.2054995
– volume-title: Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications
  year: 1999
  ident: e_1_2_6_41_1
  contributor:
    fullname: Conway B.E.
– ident: e_1_2_6_28_1
  doi: 10.1002/polb.20324
– ident: e_1_2_6_10_1
  doi: 10.1002/adma.19900021108
– ident: e_1_2_6_33_1
  doi: 10.1021/ja029326t
– ident: e_1_2_6_12_1
  doi: 10.1016/S0378-7753(03)00272-6
– ident: e_1_2_6_32_1
  doi: 10.1016/j.electacta.2005.02.098
– ident: e_1_2_6_36_1
  doi: 10.1016/j.jpowsour.2014.11.047
– ident: e_1_2_6_2_1
  doi: 10.1007/978-94-011-1568-1_8
– ident: e_1_2_6_15_1
  doi: 10.1016/S0378-7753(03)00182-4
– ident: e_1_2_6_38_1
  doi: 10.1016/S0032-3861(01)00520-1
– ident: e_1_2_6_14_1
  doi: 10.1016/S0032-3861(02)00230-6
– ident: e_1_2_6_45_1
  doi: 10.1007/s10008-012-1679-6
SSID ssj0002359
Score 2.2143028
Snippet Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and...
SourceID proquest
gale
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1536
SubjectTerms Acetal resins
Activated carbon
Calorimetry
Capacitors
Chemical industry
Conductivity
Differential scanning calorimetry
Diffraction
Electric properties
Electrolytes
Fluorides
Formations
Herbicides
Ionic conductivity
Nanocomposites
Nanostructure
Pesticides industry
Polyelectrolytes
Polyethylene
Polyethylene oxides
Polymer industry
Transmission electron microscopy
X-ray diffraction
X-rays
Title Nanocomposite solid polymer electrolytes based on polyethylene oxide, modified nanoclay, and tetraethylammonium tetrafluoroborate for application in solid-state supercapacitor
URI https://api.istex.fr/ark:/67375/WNG-3DGQ6STF-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpen.24095
https://www.proquest.com/docview/1691421666
https://search.proquest.com/docview/1709734097
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5V5QAceBQQgYIWxOtQp1k_Y3Gq2qYFQQR9qD0grfZZRU3syI6llhM_gb_CX-KXMLN20hiBhLhEVvxlst6dnZldz35DyAujAy1lEntKRrBA0UZ4ste3XmJU7MhTmMR9yI_DeP84fH8ana6Qt_OzMDU_xGLDDWeGs9c4wYUsN69IQ2G13wV3lOIBcxYkmM61c3BFHeUHUR36Br4XwDJvzirU8zcXv2z5osYiX8PevWjFm8tRq3M7g9vky7zBdbbJebeaya76-huX438-0R1yqwlH6VatP3fJisnWyPXteRW4NXJzibDwHvkBxjjHLHRM9TIU9Hak6TQfX05MQZuKOuNLiF4pekdN88zdNaAN4N0MzS9G2mzQSa5HFmJfmqG4sbjcoCLTdGZmhXBYgbNjVE3qr-y4yovcKauhEGTTpbfudJTVzfj57bs7HEXLamoKBTGAAmNV3CfHg92j7X2vKfrgKVhZRh4LpE2SVGimjQ0kkyyxJrSx9lMZ-om2zPT7cewLpaSWzKSqL1VPCGQatHAdPCCrWZ6Zh4SmNpE2VakShoVMMKxdyJDDLTRRqvuyQ57Ph59Pa24PXrM4-xzGgrux6JCXqBi8qQkKHyXumpRnoipLvhX6LMZ3xz0Q5nDIqZFh0k4NeHd40AK9bkA2h-5TojkDAe1FGq4W8lULeVaTkP8JuN4Cgnqothyn0IsHFMU55vIlET8Z7vFgZ-9zfHg04B9AzlzjeWPGSo5MSigqjjvk2eI2_gWm5mUmrwCTIOMT0qZ1yBun3n_vTP5pd-guHv079DG5AUFqVKdIr5PVWVGZJxAIzuRTN-N_Afx1YHg
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2VdlFY8CggAgUGxKOLOo3fscSmapumkEbQpqIbNJqXq6iJHTmx1LDiE_gVfokv4d6xncYIJMQmsuKTyXjmvmZ851xCXmnlKiHCwJLChwWK0twSrXZshVoGhjzFFrgPedwPumfe-3P_fIW8q87CFPwQiw031Axjr1HBcUN655o1FJb7TfBHkX-DrIG6u1i4Yf_kmjzKcf0i-HUdy4WFXsUr1HJ2Fj-teaPSJq_h-F7VIs7luNU4ns4d8qXqcpFvctnMZ6Ipv_7G5vi_z3SX3C4jUrpbiNA9sqKTDbK-VxWC2yC3ljgL75MfYI9TTETHbC9NQXSHik7S0XysM1oW1RnNIYCl6CAVTRNzV4NAgIPTNL0aKr1Nx6kaxhD-0gSbG_H5NuWJojM9y7jBclSQYT4uvopHeZqlRl41hTibLr14p8Ok6MbPb9_N-Sg6zSc6kxAGSLBX2QNy1jkY7HWtsu6DJWFx6Vu2K-IwjLiylY5dYQs7jLUXB8qJhOeEKrZ1ux0EDpdSKGHrSLaFbHGOZIMxXLsPyWqSJvoRoVEcijiSkeTa9mxuY_lCG2ncPO1Hqi0a5GU1_2xS0HuwgsjZYTAXzMxFg7xGyWBlWVD4mOLGyfSC59Mp2_UcO8DXxy1ozOCQViPBvJ0CcHR6UgO9LUFxCsMneXkMAvqLTFw15Jsa8qLgIf8TcLMGBPGQ9XaMRC8ekGeXmM4X-uxz_5C5-4efgtNBh_WgnUrkWWnJpgzJlLCpIGiQF4vb-BeYnZfoNAdMiKRPyJzWIFtGvv8-mOzjQd9cPP536HOy3h0c91jvqP_hCbkJMatfZExvktVZluunEBfOxDOj_r8Aqd1kkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtNAFB2VVmJ5YCkgAgUGxPZQpxmvsXiq2qYtS1S6iD4gWbNWURM7smOp4YlP4Ff4Jb6Ee8dOGiOQEC-RFZ_cjGfu3DkzvnOGkBdaeUqIKHSkCGCCojR3RKdrnEjL0IqnMIHrkB_74d6J_-40OF0ib2d7YSp9iPmCG_YMG6-xg4-V2bgUDYXZfhuGozi4Qlb8EJgvMqLDS-0o1wsq7uu5jgfzvJmsUMfdmP-0MRjVIXkFq_eiQTgXaasdd3q3yJdZiat0k_N2ORFt-fU3Mcf_fKTb5GbNR-lm5UB3yJJOV8m1rdkxcKvkxoJi4V3yA6JxhmnomOulKTjuQNFxNpyOdE7rI3WGU6CvFIdHRbPU3tXgDjC8aZpdDJRep6NMDQyQX5qiuSGfrlOeKjrRk5xbLMfuMShH1VdmWGZ5Zr1VU2DZdOG1Ox2kVTF-fvtud0fRohzrXAIJkBCt8nvkpLdzvLXn1Kc-OBKmloHDPGGiKOaKKW08wQSLjPZNqNxY-G6kDNPdbhi6XEqhBNOx7ArZ4RylBg1ce_fJcpql-gGhsYmEiWUsuWY-4wwPL2Qo4ubrIFZd0SLPZ82fjCtxj6SScXYTaIvEtkWLvETHSOpDQeGjwGWT4oyXRZFs-i4L8eVxB4xZHIpqpJi1UwH2jw4boNc1yGRQfZLXmyCgvKjD1UC-aiDPKhXyPwHXGkBwD9m0Yx16_oA8P8dkvihIPvd3E29791N4dNxLPoCdmccndRwrEpRSQlNh2CLP5rfxLzA3L9VZCZgIJZ9QN61F3lj3_ntlJgc7fXvx8N-hT8nVg20o4H7__SNyHQhrUKVLr5HlSV7qx0AKJ-KJ7fy_AD-QYz8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanocomposite+solid+polymer+electrolytes+based+on+polyethylene+oxide%2C+modified+nanoclay%2C+and+tetraethylammonium+tetrafluoroborate+for+application+in+solid%E2%80%90state+supercapacitor&rft.jtitle=Polymer+engineering+and+science&rft.au=Sivaraman%2C+Patchaiyappan&rft.au=Shashidhara%2C+Kannakaje&rft.au=Thakur%2C+Avinash+P.&rft.au=Samui%2C+Asit+B.&rft.date=2015-07-01&rft.issn=0032-3888&rft.eissn=1548-2634&rft.volume=55&rft.issue=7&rft.spage=1536&rft.epage=1545&rft_id=info:doi/10.1002%2Fpen.24095&rft.externalDBID=10.1002%252Fpen.24095&rft.externalDocID=PEN24095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon