Nanocomposite solid polymer electrolytes based on polyethylene oxide, modified nanoclay, and tetraethylammonium tetrafluoroborate for application in solid-state supercapacitor
Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and tetraethylammonium tetrafluoroborate (TEABF4) salt. The concentration of the salt has been varied in the respective SPE, wherein PEO/MNclay ratio was kept con...
Saved in:
Published in | Polymer engineering and science Vol. 55; no. 7; pp. 1536 - 1545 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Newtown
Blackwell Publishing Ltd
01.07.2015
Society of Plastics Engineers, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and tetraethylammonium tetrafluoroborate (TEABF4) salt. The concentration of the salt has been varied in the respective SPE, wherein PEO/MNclay ratio was kept constant. It has been proposed that three types of complex formation could be operative in the SPEs due to the interactions among PEO, MNclay, and the salt. The complex formation mechanism has been postulated on the basis of X‐ray diffraction (XRD) analysis, transmission electron microscopic (TEM) observation, differential scanning calorimetric (DSC) analysis, and polarized optical microscopic (POM) observation. ‘Complex 1’ and ‘complex 3’ formation could be involved in the crystalline phase as indicated by DSC and XRD analyses, whereas ‘complex 2’ formation might be restricted in the amorphous phase as suggested by TEM observation. The ionic conductivity of the SPEs has been correlated with the results obtained from XRD, DSC, and POM analyses. The formation of complex 1 and complex 2 could be responsible for the increase in the ionic conductivity, whereas complex 3 formation might decrease the ionic conductivity. An activated carbon‐based supercapacitor has been fabricated using SPEs and characterized by cyclic voltammetry, galvanostatic ‘charge–discharge’ behavior, and impedance spectroscopic analysis. POLYM. ENG. SCI., 55:1536–1545, 2015. © 2015 Society of Plastics Engineers |
---|---|
AbstractList | Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and tetraethylammonium tetrafluoroborate (TEABF
4
) salt. The concentration of the salt has been varied in the respective SPE, wherein PEO/MNclay ratio was kept constant. It has been proposed that three types of complex formation could be operative in the SPEs due to the interactions among PEO, MNclay, and the salt. The complex formation mechanism has been postulated on the basis of X‐ray diffraction (XRD) analysis, transmission electron microscopic (TEM) observation, differential scanning calorimetric (DSC) analysis, and polarized optical microscopic (POM) observation. ‘Complex 1’ and ‘complex 3’ formation could be involved in the crystalline phase as indicated by DSC and XRD analyses, whereas ‘complex 2’ formation might be restricted in the amorphous phase as suggested by TEM observation. The ionic conductivity of the SPEs has been correlated with the results obtained from XRD, DSC, and POM analyses. The formation of complex 1 and complex 2 could be responsible for the increase in the ionic conductivity, whereas complex 3 formation might decrease the ionic conductivity. An activated carbon‐based supercapacitor has been fabricated using SPEs and characterized by cyclic voltammetry, galvanostatic ‘charge–discharge’ behavior, and impedance spectroscopic analysis. POLYM. ENG. SCI., 55:1536–1545, 2015. © 2015 Society of Plastics Engineers Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and tetraethylammonium tetrafluoroborate (TEABF4) salt. The concentration of the salt has been varied in the respective SPE, wherein PEO/MNclay ratio was kept constant. It has been proposed that three types of complex formation could be operative in the SPEs due to the interactions among PEO, MNclay, and the salt. The complex formation mechanism has been postulated on the basis of X-ray diffraction (XRD) analysis, transmission electron microscopic (TEM) observation, differential scanning calorimetric (DSC) analysis, and polarized optical microscopic (POM) observation. 'Complex 1' and 'complex 3' formation could be involved in the crystalline phase as indicated by DSC and XRD analyses, whereas 'complex 2' formation might be restricted in the amorphous phase as suggested by TEM observation. The ionic conductivity of the SPEs has been correlated with the results obtained from XRD, DSC, and POM analyses. The formation of complex 1 and complex 2 could be responsible for the increase in the ionic conductivity, whereas complex 3 formation might decrease the ionic conductivity. An activated carbon-based supercapacitor has been fabricated using SPEs and characterized by cyclic voltammetry, galvanostatic 'charge-discharge' behavior, and impedance spectroscopic analysis. Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and tetraethylammonium tetrafluoroborate (TEABF4) salt. The concentration of the salt has been varied in the respective SPE, wherein PEO/MNclay ratio was kept constant. It has been proposed that three types of complex formation could be operative in the SPEs due to the interactions among PEO, MNclay, and the salt. The complex formation mechanism has been postulated on the basis of X‐ray diffraction (XRD) analysis, transmission electron microscopic (TEM) observation, differential scanning calorimetric (DSC) analysis, and polarized optical microscopic (POM) observation. ‘Complex 1’ and ‘complex 3’ formation could be involved in the crystalline phase as indicated by DSC and XRD analyses, whereas ‘complex 2’ formation might be restricted in the amorphous phase as suggested by TEM observation. The ionic conductivity of the SPEs has been correlated with the results obtained from XRD, DSC, and POM analyses. The formation of complex 1 and complex 2 could be responsible for the increase in the ionic conductivity, whereas complex 3 formation might decrease the ionic conductivity. An activated carbon‐based supercapacitor has been fabricated using SPEs and characterized by cyclic voltammetry, galvanostatic ‘charge–discharge’ behavior, and impedance spectroscopic analysis. POLYM. ENG. SCI., 55:1536–1545, 2015. © 2015 Society of Plastics Engineers Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and tetraethylammonium tetrafluoroborate (TEABF sub(4)) salt. The concentration of the salt has been varied in the respective SPE, wherein PEO/MNclay ratio was kept constant. It has been proposed that three types of complex formation could be operative in the SPEs due to the interactions among PEO, MNclay, and the salt. The complex formation mechanism has been postulated on the basis of X-ray diffraction (XRD) analysis, transmission electron microscopic (TEM) observation, differential scanning calorimetric (DSC) analysis, and polarized optical microscopic (POM) observation. 'Complex 1' and 'complex 3' formation could be involved in the crystalline phase as indicated by DSC and XRD analyses, whereas 'complex 2' formation might be restricted in the amorphous phase as suggested by TEM observation. The ionic conductivity of the SPEs has been correlated with the results obtained from XRD, DSC, and POM analyses. The formation of complex 1 and complex 2 could be responsible for the increase in the ionic conductivity, whereas complex 3 formation might decrease the ionic conductivity. An activated carbon-based supercapacitor has been fabricated using SPEs and characterized by cyclic voltammetry, galvanostatic 'charge-discharge' behavior, and impedance spectroscopic analysis. POLYM. ENG. SCI., 55:1536-1545, 2015. copyright 2015 Society of Plastics Engineers Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and tetraethylammonium tetrafluoroborate ([TEABF.sub.4]) salt. The concentration of the salt has been varied in the respective SPE, wherein PEO/ MNclay ratio was kept constant. It has been proposed that three types of complex formation could be operative in the SPEs due to the interactions among PEO, MNclay, and the salt. The complex formation mechanism has been postulated on the basis of X-ray diffraction (XRD) analysis, transmission electron microscopic (TEM) observation, differential scanning calorimetric (DSC) analysis, and polarized optical microscopic (POM) observation. 'Complex 1' and 'complex 3' formation could be involved in the crystalline phase as indicated by DSC and XRD analyses, whereas 'complex 2' formation might be restricted in the amorphous phase as suggested by TEM observation. The ionic conductivity of the SPEs has been correlated with the results obtained from XRD, DSC, and POM analyses. The formation of complex 1 and complex 2 could be responsible for the increase in the ionic conductivity, whereas complex 3 formation might decrease the ionic conductivity. An activated carbon-based supercapacitor has been fabricated using SPEs and characterized by cyclic voltammetry, galvanostatic 'charge-discharge' behavior, and impedance spectroscopic analysis. |
Audience | Academic |
Author | Sivaraman, Patchaiyappan Thakur, Avinash P. Shashidhara, Kannakaje Samui, Asit B. Bhattacharyya, Arup R. |
Author_xml | – sequence: 1 givenname: Patchaiyappan surname: Sivaraman fullname: Sivaraman, Patchaiyappan organization: Naval Materials Research Laboratory, Ambernath 421506, Thane, Maharashtra, India – sequence: 2 givenname: Kannakaje surname: Shashidhara fullname: Shashidhara, Kannakaje organization: Naval Materials Research Laboratory, Ambernath 421506, Maharashtra, Thane, India – sequence: 3 givenname: Avinash P. surname: Thakur fullname: Thakur, Avinash P. organization: Naval Materials Research Laboratory, Ambernath 421506, Maharashtra, Thane, India – sequence: 4 givenname: Asit B. surname: Samui fullname: Samui, Asit B. organization: Naval Materials Research Laboratory, Ambernath 421506, Maharashtra, Thane, India – sequence: 5 givenname: Arup R. surname: Bhattacharyya fullname: Bhattacharyya, Arup R. email: arupranjan@iitb.ac.in organization: Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, 400076, India |
BookMark | eNp1kltv0zAUxyM0JLrCA98gEi8gNV0c5_o4ja1MqsplQzxajn3ceTh2sB2xfCq-Ik47LkVFlnw7v__fR8fnNDrRRkMUvUTpEqVpdtaDXmZ52hRPohkq8jrJSpyfRLM0xVmC67p-Fp06d58GFhfNLPqxodow0_XGSQ-xM0ryuDdq7MDGoIB5Gw4eXNxSBzw2ehcFfzcq0BCbB8lhEXeGSyFDXE92io6LmGoee_CW7ljadUbLodtfCTUYa1pjaXhTGBvTvleSUS-Dv9T7NBLnp7AberCM9pRJb-zz6KmgysGLx3Uefb66vL14l6zfr64vztcJq1BVJAi3oqoayhEHgVvUokpALkqeNW2eVVwgqOuyzChjLW8RNKxuWUoprgMY9ngevd779tZ8G8B50knHQCmqwQyOoCptKpxP0zx69Q96bwarQ3YElQ3KM1SW5R9qSxUQqYUJdWCTKTmfkCwvyjRQyRFqGyptqQo_LWS4PuCXR_gwOHSSHRW8ORAExsOD39LBOXJ98-mQXfzFtoOTGlyYnNzeebeXHLNm1jhnQZDeyo7akaCUTM1JQnOSXXMG9mzPfg_5jf8HyYfLzS_FY2WkCwn_VlD7lZQVrgryZbMi-O3qY3lze0XW-CccQfp1 |
CODEN | PYESAZ |
CitedBy_id | crossref_primary_10_1002_pen_24549 crossref_primary_10_1002_chem_201804781 crossref_primary_10_1007_s11581_016_1946_0 crossref_primary_10_1039_C9TA01028A crossref_primary_10_1016_j_colsurfa_2021_127239 crossref_primary_10_1016_j_jpowsour_2016_12_097 crossref_primary_10_1002_pen_24397 crossref_primary_10_1007_s11581_016_1924_6 |
Cites_doi | 10.1016/j.jpowsour.2013.05.030 10.1016/j.electacta.2011.10.102 10.1016/0013-4686(94)80063-4 10.1149/1.1506301 10.1149/1.1433833 10.1021/cm960102h 10.1016/S0378-7753(98)00258-4 10.1016/0378-7753(94)80053-7 10.1016/j.jpowsour.2010.10.062 10.1021/cm960127g 10.1016/j.jpowsour.2007.11.060 10.1016/j.electacta.2005.02.053 10.1016/j.electacta.2004.06.018 10.1016/j.polymer.2004.11.077 10.1002/adma.19950070218 10.1016/j.electacta.2014.12.036 10.1021/jp982403f 10.1002/polb.20702 10.1002/adma.19960080104 10.1016/S0927-796X(00)00012-7 10.1016/j.jpowsour.2006.02.044 10.1149/1.1837324 10.1016/0167-2738(96)00070-7 10.1002/polb.10194 10.1016/j.jpowsour.2013.09.137 10.1149/1.1393423 10.1149/1.1403728 10.1149/1.2213357 10.1016/S0013-4686(02)00325-0 10.1149/1.2054995 10.1002/polb.20324 10.1002/adma.19900021108 10.1021/ja029326t 10.1016/S0378-7753(03)00272-6 10.1016/j.electacta.2005.02.098 10.1016/j.jpowsour.2014.11.047 10.1007/978-94-011-1568-1_8 10.1016/S0378-7753(03)00182-4 10.1016/S0032-3861(01)00520-1 10.1016/S0032-3861(02)00230-6 10.1007/s10008-012-1679-6 |
ContentType | Journal Article |
Copyright | 2015 Society of Plastics Engineers COPYRIGHT 2015 Society of Plastics Engineers, Inc. Copyright Blackwell Publishing Ltd. Jul 2015 |
Copyright_xml | – notice: 2015 Society of Plastics Engineers – notice: COPYRIGHT 2015 Society of Plastics Engineers, Inc. – notice: Copyright Blackwell Publishing Ltd. Jul 2015 |
DBID | BSCLL AAYXX CITATION N95 XI7 ISR 7SR 8FD JG9 7U5 L7M |
DOI | 10.1002/pen.24095 |
DatabaseName | Istex CrossRef Gale Business: Insights Business Insights: Essentials Gale In Context: Science Engineered Materials Abstracts Technology Research Database Materials Research Database Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1548-2634 |
EndPage | 1545 |
ExternalDocumentID | 3727756731 A421624560 10_1002_pen_24095 PEN24095 ark_67375_WNG_3DGQ6STF_L |
Genre | article Feature |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | -~X .-4 .3N .4S .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29O 31~ 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 88I 8AF 8FE 8FG 8G5 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDEX ABEML ABIJN ABJCF ABJNI ABPVW ABTAH ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AIXEN AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAAKF BAFTC BDRZF BENPR BES BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 DWQXO EBS EJD F00 F01 F04 FEDTE FOJGT G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IAO ICW IEA IOF ISR ITC IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M2Q M6K M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N95 N9A NDZJH NEJ NF~ NNB O66 O9- OIG P2P P2W P2X P4D P62 PALCI PDBOC PQQKQ PROAC PTHSS PV9 Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RWL RWM RX1 RXW RYL RZL S0X SAMSI SUPJJ TUS U5U UB1 V2E W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XI7 XV2 ZE2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX CITATION ACXME ABHUG ACSMX ADAWD ADDAD AFVGU AGJLS 7SR 8FD JG9 7U5 L7M |
ID | FETCH-LOGICAL-c7175-13bf779ad1def3b1b17fe4f6d29b427df1e88662accbdb1e9c8bc0aa3817fc8b3 |
IEDL.DBID | DR2 |
ISSN | 0032-3888 |
IngestDate | Fri Aug 16 01:54:59 EDT 2024 Thu Oct 10 18:15:32 EDT 2024 Thu Feb 22 23:59:37 EST 2024 Fri Jan 12 01:48:10 EST 2024 Wed Jan 10 04:17:19 EST 2024 Thu Aug 01 20:18:27 EDT 2024 Tue Oct 08 14:28:33 EDT 2024 Fri Aug 23 00:39:14 EDT 2024 Sat Aug 24 00:55:21 EDT 2024 Wed Oct 30 09:50:43 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c7175-13bf779ad1def3b1b17fe4f6d29b427df1e88662accbdb1e9c8bc0aa3817fc8b3 |
Notes | istex:55470F4C9501E61CF2CAA9484E995B8357D5797B ark:/67375/WNG-3DGQ6STF-L ArticleID:PEN24095 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1691421666 |
PQPubID | 41843 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1709734097 proquest_journals_1691421666 gale_infotracmisc_A421624560 gale_infotracgeneralonefile_A421624560 gale_infotracacademiconefile_A421624560 gale_incontextgauss_ISR_A421624560 gale_businessinsightsgauss_A421624560 crossref_primary_10_1002_pen_24095 wiley_primary_10_1002_pen_24095_PEN24095 istex_primary_ark_67375_WNG_3DGQ6STF_L |
PublicationCentury | 2000 |
PublicationDate | July 2015 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: July 2015 |
PublicationDecade | 2010 |
PublicationPlace | Newtown |
PublicationPlace_xml | – name: Newtown |
PublicationTitle | Polymer engineering and science |
PublicationTitleAlternate | Polym Eng Sci |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Society of Plastics Engineers, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Society of Plastics Engineers, Inc |
References | X. Liu and T. Osaka, J. Electrochem. Soc., 143, 3982 (1996). R. Krishnamoorti, R.A. Vaia, and E.P. Giannelis, Chem. Mater., 8, 1728 (1996). L. Fan, C.-W. Nan, and Z. Dang, Electrochim. Acta, 47, 3541 (2002). M. Marzantowicz, J.R. Dygas, F. Krok, J.L. Nowinski, A. Tomaszewska, Z. Florjanczyk, and E. Zygadlo-Monikowska, J. Power Sources, 159, 420 (2006). F. Croce, L. Persi, B. Scrosati, E. Plichta, and M.A. Hendrickson, J. Electrochem. Soc., 149, A212 (2002). C.-S. Liao and W.-B. Ye, Electrochim. Acta, 49, 4993 (2004). S. Kim, E.-J. Hwang, Y. Jung, M. Han, and S.-J. Park, Colloids Surf. A, 313, 216 (2008). R.S. Hastak, P. Sivaraman, D.D. Potphode, K. Shashidhara, and A.B. Samui, Electrochim. Acta, 59, 296 (2012). E.P. Giannelis, Adv. Mater., 8, 29 (1996). B. Scrosati, F. Croce, and L. Persi, J. Electrochem. Soc., 147, 1718 (2000). R.A. Vaia, K.D. Jandt, E.J. Kramer, and E.P. Giannelis, Chem. Mater., 8, 2628 (1996). S. Ketabi and K. Lian, Electrochim. Acta, 154, 404 (2015). Z. Wen, Z. Gu, T. Itoh, A. Lin, and O. Yamamoto, J. Power Sources, 119-121, 427 (2003). Z. Stoeva, I. Martin-Litas, E. Staunton, Y.G. Andreev, and P.G. Bruce, J. Am. Chem. Soc., 125, 4619 (2003). P. Sivaraman, A. Thakur, R.K. Kushwaha, D. Ratna, and A.B. Samui, Electrochem. Solid-State Lett., 9, A435 (2006). B.E. Conway, Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum, New York (1999). W. Loyens, J. Patric, and F.H.J. Maurer, Polymer, 46, 903 (2005). A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, and J.P. Ferrasis, J. Power Sources, 47, 89 (1994). Y.L. Ni'Mah, M.-Y. Cheng, J.H. Cheng, and J. Rick, J. Power Sources, 278, 375 (2015). J.Y. Kim and I.J. Chang, J. Electrochem. Soc., 149, A1376 (2002). M. Ishikawa, M. Morita, M. Ihara, and Y. Matsuda, J. Electrochem. Soc., 141, 1730 (1994). H.-W. Chen, C.-Y. Chiu, and F.-C. Chang, J. Polym. Sci. Part B: Polym. Phys., 40, 1342 (2002). S.K. Srivastava, M. Pramanik, and H. Arharya, J. Polym. Sci. Part B: Polym. Phys., 44, 471 (2006). Z. Shen, G.P. Simon, and Y.B. Cheng, Polymer, 43, 4251 (2002). E. Ruitz-Hitzky, P. Aranda, B. Casal, and J.C. Galvan, Adv. Mater., 7, 180 (1995). H.-W. Chen and F.-C. Chang, Polymer, 42, 9763 (2001). J.S. Moreno, M. Armand, M.B. Berman, S.G. Greenbaum, B. Scrosati, and S. Panero, J. Power Sources, 248, 695 (2014). A. Laforgue, P. Simon, S. Sarrasin, and J.F. Fauvarque, J. Power Sources, 80, 142 (1999). W. Wieezorek, D. Raducha, A. Znlewska, and J.R. Stevens, J. Phys. Chem. B, 102, 8725 (1998). M. Marzantowicz, J.R. Dygas, F. Krok, A. Lasinska, Z. Florjanczyk, and E. Zygadlo-Monikowska, Electrochim. Acta, 51, 1713 (2006). Y.H. Liao, X.P. Li, C.H. Fu, R. Xu, L. Zhou, C.L. Tan, S.J. Hu, and W.S. Li, J. Power Sources, 196, 2115 (2011). C. Yuan, J. Li, P. Han, Y. Lai, Z. Zhang, and J. Liu, J. Power Sources, 240, 653 (2013). E. Ruitz-Hitzky and P. Aranda, Adv. Mater., 2, 545 (1990). M. Alexandre and P. Dubois, Mater. Sci. Eng. R, 28, 1 (2000). A. Clemente, S. Panero, E. Spila, and B. Scrosati, Solid State Ionics, 85, 273 (1996). R.L. Lavall, R.S. Borges, H.D.R. Calado, C. Welter, J.P.C. Trigueiro, J. Rieumont, B.R.A. Neves, and G.G. Silva, J. Power Sources, 177, 652 (2008). B. Scrosati, Applications of Electroactive Polymers, 1st ed., Chapman & Hall, London (1993). A. Rudge, I. Raistrick, S. Gottesfield, and J.P. Ferraris, Electrochim. Acta, 39, 273 (1994). R.S. Hastak, P. Sivaraman, D.D. Potphode, K. Shashidhara, and A.B. Samui, J. Solid State Electrochem., 16, 3215 (2012). S.C. Tjong and S.P. Bao, J. Polym. Sci. Part B: Polym. Phys., 43, 253 (2005). G.B. Appetecchi, W. Henderson, P. Villano, M. Berrettoni, and S. Passerini, J. Electrochem. Soc., 148, A1171 (2001). M. Marzantowicz, J.R. Dygas, F. Krok, A. Lasinska, Z. Florjanczyk, E. Zygadlo-Monkowska, and A. Affek, Electrochim. Acta, 50, 3969 (2005). G. Sandi, K.A. Carrado, H. Joachin, W. Lu, and J. Prakash, J. Power Sources, 119, 492 (2003). 2003; 119 2000; 28 2006; 51 2004; 49 2006; 9 1994; 47 2005; 43 2013; 240 1993 1996; 143 2012; 16 2002 2012; 59 2011; 196 2006; 159 1999; 80 2001; 148 2005; 46 2001; 42 1995; 7 1999 1990; 2 2002; 47 2014; 248 2000; 147 2006; 44 2003; 119–121 2002; 40 2015; 278 1994; 141 2002; 43 2015; 154 1996; 85 2002; 149 2008; 216 1994; 39 2005; 50 2008; 177 2003; 125 1998; 102 1996; 8 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Kim S. (e_1_2_6_35_1) 2008; 216 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 Conway B.E. (e_1_2_6_41_1) 1999 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_40_1 Scrosati B. (e_1_2_6_3_1) 2002 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 9 start-page: A435 year: 2006 publication-title: Electrochem. Solid‐State Lett. – volume: 177 start-page: 652 year: 2008 publication-title: J. Power Sources – volume: 102 start-page: 8725 year: 1998 publication-title: J. Phys. Chem. B – volume: 159 start-page: 420 year: 2006 publication-title: J. Power Sources – volume: 143 start-page: 3982 year: 1996 publication-title: J. Electrochem. Soc. – volume: 43 start-page: 253 year: 2005 publication-title: J. Polym. Sci. Part B: Polym. Phys. – volume: 7 start-page: 180 year: 1995 publication-title: Adv. Mater. – volume: 49 start-page: 4993 year: 2004 publication-title: Electrochim. Acta – volume: 141 start-page: 1730 year: 1994 publication-title: J. Electrochem. Soc. – volume: 80 start-page: 142 year: 1999 publication-title: J. Power Sources – volume: 42 start-page: 9763 year: 2001 publication-title: Polymer – volume: 149 start-page: A212 year: 2002 publication-title: J. Electrochem. Soc. – volume: 148 start-page: A1171 year: 2001 publication-title: J. Electrochem. Soc. – volume: 119–121 start-page: 427 year: 2003 publication-title: J. Power Sources – volume: 40 start-page: 1342 year: 2002 publication-title: J. Polym. Sci. Part B: Polym. Phys. – volume: 149 start-page: A1376 year: 2002 publication-title: J. Electrochem. Soc. – volume: 85 start-page: 273 year: 1996 publication-title: Solid State Ionics – volume: 16 start-page: 3215 year: 2012 publication-title: J. Solid State Electrochem. – volume: 248 start-page: 695 year: 2014 publication-title: J. Power Sources – volume: 43 start-page: 4251 year: 2002 publication-title: Polymer – volume: 50 start-page: 3969 year: 2005 publication-title: Electrochim. Acta – volume: 8 start-page: 2628 year: 1996 publication-title: Chem. Mater. – volume: 39 start-page: 273 year: 1994 publication-title: Electrochim. Acta – volume: 47 start-page: 89 year: 1994 publication-title: J. Power Sources – volume: 47 start-page: 3541 year: 2002 publication-title: Electrochim. Acta – volume: 44 start-page: 471 year: 2006 publication-title: J. Polym. Sci. Part B: Polym. Phys. – volume: 278 start-page: 375 year: 2015 publication-title: J. Power Sources – volume: 240 start-page: 653 year: 2013 publication-title: J. Power Sources – volume: 46 start-page: 903 year: 2005 publication-title: Polymer – year: 2002 – volume: 147 start-page: 1718 year: 2000 publication-title: J. Electrochem. Soc. – volume: 2 start-page: 545 year: 1990 publication-title: Adv. Mater. – volume: 51 start-page: 1713 year: 2006 publication-title: Electrochim. Acta – volume: 196 start-page: 2115 year: 2011 publication-title: J. Power Sources – volume: 28 start-page: 1 year: 2000 publication-title: Mater. Sci. Eng. R – volume: 8 start-page: 1728 year: 1996 publication-title: Chem. Mater. – volume: 8 start-page: 29 year: 1996 publication-title: Adv. Mater. – volume: 154 start-page: 404 year: 2015 publication-title: Electrochim. Acta – volume: 59 start-page: 296 year: 2012 publication-title: Electrochim. Acta – year: 1993 – volume: 125 start-page: 4619 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 216 start-page: 313 year: 2008 publication-title: Colloids Surf. A – volume: 119 start-page: 492 year: 2003 publication-title: J. Power Sources – year: 1999 – ident: e_1_2_6_39_1 doi: 10.1016/j.jpowsour.2013.05.030 – ident: e_1_2_6_44_1 doi: 10.1016/j.electacta.2011.10.102 – ident: e_1_2_6_24_1 doi: 10.1016/0013-4686(94)80063-4 – volume-title: Handbook of Polymers in Electronics year: 2002 ident: e_1_2_6_3_1 contributor: fullname: Scrosati B. – ident: e_1_2_6_43_1 doi: 10.1149/1.1506301 – ident: e_1_2_6_5_1 doi: 10.1149/1.1433833 – ident: e_1_2_6_9_1 doi: 10.1021/cm960102h – ident: e_1_2_6_22_1 doi: 10.1016/S0378-7753(98)00258-4 – ident: e_1_2_6_23_1 doi: 10.1016/0378-7753(94)80053-7 – ident: e_1_2_6_37_1 doi: 10.1016/j.jpowsour.2010.10.062 – ident: e_1_2_6_8_1 doi: 10.1021/cm960127g – ident: e_1_2_6_21_1 doi: 10.1016/j.jpowsour.2007.11.060 – ident: e_1_2_6_31_1 doi: 10.1016/j.electacta.2005.02.053 – ident: e_1_2_6_25_1 doi: 10.1016/j.electacta.2004.06.018 – ident: e_1_2_6_13_1 doi: 10.1016/j.polymer.2004.11.077 – ident: e_1_2_6_11_1 doi: 10.1002/adma.19950070218 – ident: e_1_2_6_20_1 doi: 10.1016/j.electacta.2014.12.036 – ident: e_1_2_6_27_1 doi: 10.1021/jp982403f – ident: e_1_2_6_6_1 doi: 10.1002/polb.20702 – ident: e_1_2_6_7_1 doi: 10.1002/adma.19960080104 – ident: e_1_2_6_26_1 doi: 10.1016/S0927-796X(00)00012-7 – ident: e_1_2_6_29_1 doi: 10.1016/j.jpowsour.2006.02.044 – ident: e_1_2_6_18_1 doi: 10.1149/1.1837324 – ident: e_1_2_6_42_1 doi: 10.1016/0167-2738(96)00070-7 – ident: e_1_2_6_16_1 doi: 10.1002/polb.10194 – ident: e_1_2_6_40_1 doi: 10.1016/j.jpowsour.2013.09.137 – volume: 216 start-page: 313 year: 2008 ident: e_1_2_6_35_1 publication-title: Colloids Surf. A contributor: fullname: Kim S. – ident: e_1_2_6_4_1 doi: 10.1149/1.1393423 – ident: e_1_2_6_30_1 doi: 10.1149/1.1403728 – ident: e_1_2_6_19_1 doi: 10.1149/1.2213357 – ident: e_1_2_6_34_1 doi: 10.1016/S0013-4686(02)00325-0 – ident: e_1_2_6_17_1 doi: 10.1149/1.2054995 – volume-title: Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications year: 1999 ident: e_1_2_6_41_1 contributor: fullname: Conway B.E. – ident: e_1_2_6_28_1 doi: 10.1002/polb.20324 – ident: e_1_2_6_10_1 doi: 10.1002/adma.19900021108 – ident: e_1_2_6_33_1 doi: 10.1021/ja029326t – ident: e_1_2_6_12_1 doi: 10.1016/S0378-7753(03)00272-6 – ident: e_1_2_6_32_1 doi: 10.1016/j.electacta.2005.02.098 – ident: e_1_2_6_36_1 doi: 10.1016/j.jpowsour.2014.11.047 – ident: e_1_2_6_2_1 doi: 10.1007/978-94-011-1568-1_8 – ident: e_1_2_6_15_1 doi: 10.1016/S0378-7753(03)00182-4 – ident: e_1_2_6_38_1 doi: 10.1016/S0032-3861(01)00520-1 – ident: e_1_2_6_14_1 doi: 10.1016/S0032-3861(02)00230-6 – ident: e_1_2_6_45_1 doi: 10.1007/s10008-012-1679-6 |
SSID | ssj0002359 |
Score | 2.2143028 |
Snippet | Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and... |
SourceID | proquest gale crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 1536 |
SubjectTerms | Acetal resins Activated carbon Calorimetry Capacitors Chemical industry Conductivity Differential scanning calorimetry Diffraction Electric properties Electrolytes Fluorides Formations Herbicides Ionic conductivity Nanocomposites Nanostructure Pesticides industry Polyelectrolytes Polyethylene Polyethylene oxides Polymer industry Transmission electron microscopy X-ray diffraction X-rays |
Title | Nanocomposite solid polymer electrolytes based on polyethylene oxide, modified nanoclay, and tetraethylammonium tetrafluoroborate for application in solid-state supercapacitor |
URI | https://api.istex.fr/ark:/67375/WNG-3DGQ6STF-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpen.24095 https://www.proquest.com/docview/1691421666 https://search.proquest.com/docview/1709734097 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5V5QAceBQQgYIWxOtQp1k_Y3Gq2qYFQQR9qD0grfZZRU3syI6llhM_gb_CX-KXMLN20hiBhLhEVvxlst6dnZldz35DyAujAy1lEntKRrBA0UZ4ste3XmJU7MhTmMR9yI_DeP84fH8ana6Qt_OzMDU_xGLDDWeGs9c4wYUsN69IQ2G13wV3lOIBcxYkmM61c3BFHeUHUR36Br4XwDJvzirU8zcXv2z5osYiX8PevWjFm8tRq3M7g9vky7zBdbbJebeaya76-huX438-0R1yqwlH6VatP3fJisnWyPXteRW4NXJzibDwHvkBxjjHLHRM9TIU9Hak6TQfX05MQZuKOuNLiF4pekdN88zdNaAN4N0MzS9G2mzQSa5HFmJfmqG4sbjcoCLTdGZmhXBYgbNjVE3qr-y4yovcKauhEGTTpbfudJTVzfj57bs7HEXLamoKBTGAAmNV3CfHg92j7X2vKfrgKVhZRh4LpE2SVGimjQ0kkyyxJrSx9lMZ-om2zPT7cewLpaSWzKSqL1VPCGQatHAdPCCrWZ6Zh4SmNpE2VakShoVMMKxdyJDDLTRRqvuyQ57Ph59Pa24PXrM4-xzGgrux6JCXqBi8qQkKHyXumpRnoipLvhX6LMZ3xz0Q5nDIqZFh0k4NeHd40AK9bkA2h-5TojkDAe1FGq4W8lULeVaTkP8JuN4Cgnqothyn0IsHFMU55vIlET8Z7vFgZ-9zfHg04B9AzlzjeWPGSo5MSigqjjvk2eI2_gWm5mUmrwCTIOMT0qZ1yBun3n_vTP5pd-guHv079DG5AUFqVKdIr5PVWVGZJxAIzuRTN-N_Afx1YHg |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2VdlFY8CggAgUGxKOLOo3fscSmapumkEbQpqIbNJqXq6iJHTmx1LDiE_gVfokv4d6xncYIJMQmsuKTyXjmvmZ851xCXmnlKiHCwJLChwWK0twSrXZshVoGhjzFFrgPedwPumfe-3P_fIW8q87CFPwQiw031Axjr1HBcUN655o1FJb7TfBHkX-DrIG6u1i4Yf_kmjzKcf0i-HUdy4WFXsUr1HJ2Fj-teaPSJq_h-F7VIs7luNU4ns4d8qXqcpFvctnMZ6Ipv_7G5vi_z3SX3C4jUrpbiNA9sqKTDbK-VxWC2yC3ljgL75MfYI9TTETHbC9NQXSHik7S0XysM1oW1RnNIYCl6CAVTRNzV4NAgIPTNL0aKr1Nx6kaxhD-0gSbG_H5NuWJojM9y7jBclSQYT4uvopHeZqlRl41hTibLr14p8Ok6MbPb9_N-Sg6zSc6kxAGSLBX2QNy1jkY7HWtsu6DJWFx6Vu2K-IwjLiylY5dYQs7jLUXB8qJhOeEKrZ1ux0EDpdSKGHrSLaFbHGOZIMxXLsPyWqSJvoRoVEcijiSkeTa9mxuY_lCG2ncPO1Hqi0a5GU1_2xS0HuwgsjZYTAXzMxFg7xGyWBlWVD4mOLGyfSC59Mp2_UcO8DXxy1ozOCQViPBvJ0CcHR6UgO9LUFxCsMneXkMAvqLTFw15Jsa8qLgIf8TcLMGBPGQ9XaMRC8ekGeXmM4X-uxz_5C5-4efgtNBh_WgnUrkWWnJpgzJlLCpIGiQF4vb-BeYnZfoNAdMiKRPyJzWIFtGvv8-mOzjQd9cPP536HOy3h0c91jvqP_hCbkJMatfZExvktVZluunEBfOxDOj_r8Aqd1kkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtNAFB2VVmJ5YCkgAgUGxPZQpxmvsXiq2qYtS1S6iD4gWbNWURM7smOp4YlP4Ff4Jb6Ee8dOGiOQEC-RFZ_cjGfu3DkzvnOGkBdaeUqIKHSkCGCCojR3RKdrnEjL0IqnMIHrkB_74d6J_-40OF0ib2d7YSp9iPmCG_YMG6-xg4-V2bgUDYXZfhuGozi4Qlb8EJgvMqLDS-0o1wsq7uu5jgfzvJmsUMfdmP-0MRjVIXkFq_eiQTgXaasdd3q3yJdZiat0k_N2ORFt-fU3Mcf_fKTb5GbNR-lm5UB3yJJOV8m1rdkxcKvkxoJi4V3yA6JxhmnomOulKTjuQNFxNpyOdE7rI3WGU6CvFIdHRbPU3tXgDjC8aZpdDJRep6NMDQyQX5qiuSGfrlOeKjrRk5xbLMfuMShH1VdmWGZ5Zr1VU2DZdOG1Ox2kVTF-fvtud0fRohzrXAIJkBCt8nvkpLdzvLXn1Kc-OBKmloHDPGGiKOaKKW08wQSLjPZNqNxY-G6kDNPdbhi6XEqhBNOx7ArZ4RylBg1ce_fJcpql-gGhsYmEiWUsuWY-4wwPL2Qo4ubrIFZd0SLPZ82fjCtxj6SScXYTaIvEtkWLvETHSOpDQeGjwGWT4oyXRZFs-i4L8eVxB4xZHIpqpJi1UwH2jw4boNc1yGRQfZLXmyCgvKjD1UC-aiDPKhXyPwHXGkBwD9m0Yx16_oA8P8dkvihIPvd3E29791N4dNxLPoCdmccndRwrEpRSQlNh2CLP5rfxLzA3L9VZCZgIJZ9QN61F3lj3_ntlJgc7fXvx8N-hT8nVg20o4H7__SNyHQhrUKVLr5HlSV7qx0AKJ-KJ7fy_AD-QYz8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanocomposite+solid+polymer+electrolytes+based+on+polyethylene+oxide%2C+modified+nanoclay%2C+and+tetraethylammonium+tetrafluoroborate+for+application+in+solid%E2%80%90state+supercapacitor&rft.jtitle=Polymer+engineering+and+science&rft.au=Sivaraman%2C+Patchaiyappan&rft.au=Shashidhara%2C+Kannakaje&rft.au=Thakur%2C+Avinash+P.&rft.au=Samui%2C+Asit+B.&rft.date=2015-07-01&rft.issn=0032-3888&rft.eissn=1548-2634&rft.volume=55&rft.issue=7&rft.spage=1536&rft.epage=1545&rft_id=info:doi/10.1002%2Fpen.24095&rft.externalDBID=10.1002%252Fpen.24095&rft.externalDocID=PEN24095 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon |