Nanocomposite solid polymer electrolytes based on polyethylene oxide, modified nanoclay, and tetraethylammonium tetrafluoroborate for application in solid-state supercapacitor
Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and tetraethylammonium tetrafluoroborate (TEABF4) salt. The concentration of the salt has been varied in the respective SPE, wherein PEO/MNclay ratio was kept con...
Saved in:
Published in | Polymer engineering and science Vol. 55; no. 7; pp. 1536 - 1545 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Newtown
Blackwell Publishing Ltd
01.07.2015
Society of Plastics Engineers, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Nanocomposite solid polymer electrolytes (SPEs) have been prepared from polyethylene oxide (PEO), organically modified nanoclay (MNclay), and tetraethylammonium tetrafluoroborate (TEABF4) salt. The concentration of the salt has been varied in the respective SPE, wherein PEO/MNclay ratio was kept constant. It has been proposed that three types of complex formation could be operative in the SPEs due to the interactions among PEO, MNclay, and the salt. The complex formation mechanism has been postulated on the basis of X‐ray diffraction (XRD) analysis, transmission electron microscopic (TEM) observation, differential scanning calorimetric (DSC) analysis, and polarized optical microscopic (POM) observation. ‘Complex 1’ and ‘complex 3’ formation could be involved in the crystalline phase as indicated by DSC and XRD analyses, whereas ‘complex 2’ formation might be restricted in the amorphous phase as suggested by TEM observation. The ionic conductivity of the SPEs has been correlated with the results obtained from XRD, DSC, and POM analyses. The formation of complex 1 and complex 2 could be responsible for the increase in the ionic conductivity, whereas complex 3 formation might decrease the ionic conductivity. An activated carbon‐based supercapacitor has been fabricated using SPEs and characterized by cyclic voltammetry, galvanostatic ‘charge–discharge’ behavior, and impedance spectroscopic analysis. POLYM. ENG. SCI., 55:1536–1545, 2015. © 2015 Society of Plastics Engineers |
---|---|
Bibliography: | istex:55470F4C9501E61CF2CAA9484E995B8357D5797B ark:/67375/WNG-3DGQ6STF-L ArticleID:PEN24095 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0032-3888 1548-2634 |
DOI: | 10.1002/pen.24095 |