Robust and Efficient Hybrid Optimal Control via Gaussian Process Regression and Multiple Shooting With Experimental Validation on a Double Pendulum on a Cart

In this contribution, we propose an innovative method for determining optimal control sequences for nonlinear systems with partially unknown dynamics, which further expands our previous work. Within the paradigm of model‐based design, the practicality and safety of commissioning feedforward controls...

Full description

Saved in:
Bibliographic Details
Published inProceedings in applied mathematics and mechanics Vol. 25; no. 2
Main Authors Hesse, Michael, Schwarzer, Luis, Timmermann, Julia, Trächtler, Ansgar
Format Journal Article
LanguageEnglish
Published 01.06.2025
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this contribution, we propose an innovative method for determining optimal control sequences for nonlinear systems with partially unknown dynamics, which further expands our previous work. Within the paradigm of model‐based design, the practicality and safety of commissioning feedforward controls and feedback controllers have priority. Our approach leverages probabilistic Gaussian processes to adjust for model inaccuracies from measured system data. This differs from conventional approaches that involve complicated analytical modeling and may entail a substantial time investment to acquire expertise and may prove impractical. Consequently, we address the limitations inherent in traditional design methodologies. Our research focuses on the formulation and solution of the hybrid 1 optimal control problem using probabilistic state predictions and multiple shooting. This ensures adaptability, data efficiency, and resilience against uncertainties in system dynamics. These attributes are empirically substantiated through experimental validation on a chaotic and highly sensitive dynamical system—a double pendulum on a cart. Our methodology unfolds as an iterative learning process, systematically exploring diverse controls, accumulating data within each iteration, and refining the control strategy until the desired task is accomplished. The adoption of the two‐degree‐of‐freedom control structure allows for the distinct consideration of the feedforward and the feedback control signal. For the latter, we employ a time‐variant, linear quadratic regulator (LQR) designed to stabilize the system around its target trajectory. Furthermore, we integrate a probabilistic long‐term prediction through the unscented transform, enabling systematic anticipation of safety‐critical violations. Detailed insights into relevant implementation aspects are provided. To ascertain the real‐world applicability, we present an exemplary application involving a double pendulum on a cart. The objective is to bring the pendulum arms from the lower stable to the upper unstable equilibrium by horizontally moving the cart and subsequently stabilize them. In this scenario, we assume that the centrifugal forces, crucial to the system dynamics, have not been accurately modeled and must be learned from data. Solving the control task took only 5 iterations and 1 h of computation time, which surpasses our previous work [2], where we used the purely data‐driven PILCO framework and required 27 iterations and 57 h of computation time. The time of interaction with the system decreased by and the computation time is lowered by . It demonstrates significant practical applicability for commissioning control systems.
ISSN:1617-7061
1617-7061
DOI:10.1002/pamm.70004