Spatio-Temporal Evolution of Fogwater Chemistry in Alsace
For the current article, forty-two fogwater samples are collected at four sites in Alsace (Strasbourg, Geispolsheim, Erstein, and Cronenbourg) between 2015 and 2021, except 2019 and 2020. Spatio-temporal evolution is studied for their inorganic fraction (ions and heavy metals), and physico-chemical...
Saved in:
Published in | Air Vol. 2; no. 3; pp. 229 - 246 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
09.07.2024
|
Online Access | Get full text |
Cover
Loading…
Summary: | For the current article, forty-two fogwater samples are collected at four sites in Alsace (Strasbourg, Geispolsheim, Erstein, and Cronenbourg) between 2015 and 2021, except 2019 and 2020. Spatio-temporal evolution is studied for their inorganic fraction (ions and heavy metals), and physico-chemical properties (pH, conductivity (K), liquid water content (LWC), and dissolved organic carbon (DOC)). The analyses show a remarkable shifting in pH from acidic to basic mainly due to the significant decrease in sulfate and nitrate levels. The calculated median LWC is somehow low (37.8–69.5 g m3) in fog samples, preventing the collection of large fog volumes. The median DOC varies between 14.3 and 24.4 ppm, whereas the median conductivity varies from 97.8 to 169.8 µS cm−1. Total ionic concentration (TIC) varies from 1338.3 to 1952.4 µEq L−1, whereas the total concentration of metals varies in the range of 1547.2 and 2860.3 µg L−1. The marine contribution is found to be negligible at all sites for the investigated elements. NH4+, in most samples, is capable alone to neutralize the acidity. On one hand, NH4+, Ca2+, NO3−, and SO42− are the dominant ions found in all samples, accounting for more than 80% of the TIC. On the other hand, Zn and Ni are the dominant metals accounting for more than 78% of the total elemental concentration. Heavy metals are found to primarily originate from crust as well as human-made activities. The median concentrations of individual elements either decrease or increase over the sampling period due to the wet deposition phenomenon or weather conditions. A Pearson analysis proves some of the suggested pollutant sources due to the presence of strong and significant correlations between elements. |
---|---|
ISSN: | 2813-4168 2813-4168 |
DOI: | 10.3390/air2030014 |