The effect of blood pressure calibrations and transcranial Doppler signal loss on transfer function estimates of cerebral autoregulation

There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism (“physiocal”) causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 33; no. 5; pp. 553 - 562
Main Authors Deegan, Brian M., Serrador, Jorge M., Nakagawa, Kazuma, Jones, Edward, Sorond, Farzaneh A., ÓLaighin, Gearóid
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.06.2011
Elsevier
Subjects
Online AccessGet full text
ISSN1350-4533
1873-4030
1873-4030
DOI10.1016/j.medengphy.2010.12.007

Cover

Abstract There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism (“physiocal”) causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We assessed the effects of “physiocals” and TCD signal loss on transfer function estimates in recordings of 45 healthy subjects. We added artificial “physiocals” and removed sections of TCD signal from 5 min Finapres and TCD recordings. We also compared transfer function results from 5 min time series with time series as short as 1 min. Accurate transfer function estimates can be achieved in the 0.03–0.07 Hz band using beat-by-beat data with linear interpolation, while data loss is less than 10 s. At frequencies between 0.07 and 0.5 Hz, transfer function estimates become unreliable with 5 s of data loss every 50 s. 2 s data loss only affects frequency bands above 0.15 Hz. Finally, accurate transfer function assessment of autoregulatory function can be achieved from time series as short as 1 min, although gain and coherence tend to be overestimated at higher frequencies.
AbstractList There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism ("physiocal") causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We assessed the effects of "physiocals" and TCD signal loss on transfer function estimates in recordings of 45 healthy subjects. We added artificial "physiocals" and removed sections of TCD signal from 5 min Finapres and TCD recordings. We also compared transfer function results from 5 min time series with time series as short as 1 min. Accurate transfer function estimates can be achieved in the 0.03-0.07 Hz band using beat-by-beat data with linear interpolation, while data loss is less than 10 s. At frequencies between 0.07 and 0.5 Hz, transfer function estimates become unreliable with 5 s of data loss every 50 s. 2 s data loss only affects frequency bands above 0.15 Hz. Finally, accurate transfer function assessment of autoregulatory function can be achieved from time series as short as 1 min, although gain and coherence tend to be overestimated at higher frequencies.
There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism (“physiocal”) causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We assessed the effects of “physiocals” and TCD signal loss on transfer function estimates in recordings of 45 healthy subjects. We added artificial “physiocals” and removed sections of TCD signal from 5 min Finapres and TCD recordings. We also compared transfer function results from 5 min time series with time series as short as 1 min. Accurate transfer function estimates can be achieved in the 0.03–0.07 Hz band using beat-by-beat data with linear interpolation, while data loss is less than 10 s. At frequencies between 0.07 and 0.5 Hz, transfer function estimates become unreliable with 5 s of data loss every 50 s. 2 s data loss only affects frequency bands above 0.15 Hz. Finally, accurate transfer function assessment of autoregulatory function can be achieved from time series as short as 1 min, although gain and coherence tend to be overestimated at higher frequencies.
There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism ("physiocal") causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We assessed the effects of "physiocals" and TCD signal loss on transfer function estimates in recordings of 45 healthy subjects. We added artificial "physiocals" and removed sections of TCD signal from 5 min Finapres and TCD recordings. We also compared transfer function results from 5 min time series with time series as short as 1 min. Accurate transfer function estimates can be achieved in the 0.03-0.07 Hz band using beat-by-beat data with linear interpolation, while data loss is less than 10s. At frequencies between 0.07 and 0.5 Hz, transfer function estimates become unreliable with 5s of data loss every 50s. 2s data loss only affects frequency bands above 0.15Hz. Finally, accurate transfer function assessment of autoregulatory function can be achieved from time series as short as 1min, although gain and coherence tend to be overestimated at higher frequencies.There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism ("physiocal") causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We assessed the effects of "physiocals" and TCD signal loss on transfer function estimates in recordings of 45 healthy subjects. We added artificial "physiocals" and removed sections of TCD signal from 5 min Finapres and TCD recordings. We also compared transfer function results from 5 min time series with time series as short as 1 min. Accurate transfer function estimates can be achieved in the 0.03-0.07 Hz band using beat-by-beat data with linear interpolation, while data loss is less than 10s. At frequencies between 0.07 and 0.5 Hz, transfer function estimates become unreliable with 5s of data loss every 50s. 2s data loss only affects frequency bands above 0.15Hz. Finally, accurate transfer function assessment of autoregulatory function can be achieved from time series as short as 1min, although gain and coherence tend to be overestimated at higher frequencies.
There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism ("physiocal") causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We assessed the effects of "physiocals" and TCD signal loss on transfer function estimates in recordings of 45 healthy subjects. We added artificial "physiocals" and removed sections of TCD signal from 5 min Finapres and TCD recordings. We also compared transfer function results from 5 min time series with time series as short as 1 min. Accurate transfer function estimates can be achieved in the 0.03-0.07 Hz band using beat-by-beat data with linear interpolation, while data loss is less than 10s. At frequencies between 0.07 and 0.5 Hz, transfer function estimates become unreliable with 5s of data loss every 50s. 2s data loss only affects frequency bands above 0.15Hz. Finally, accurate transfer function assessment of autoregulatory function can be achieved from time series as short as 1min, although gain and coherence tend to be overestimated at higher frequencies.
Abstract There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism (“physiocal”) causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We assessed the effects of “physiocals” and TCD signal loss on transfer function estimates in recordings of 45 healthy subjects. We added artificial “physiocals” and removed sections of TCD signal from 5 min Finapres and TCD recordings. We also compared transfer function results from 5 min time series with time series as short as 1 min. Accurate transfer function estimates can be achieved in the 0.03–0.07 Hz band using beat-by-beat data with linear interpolation, while data loss is less than 10 s. At frequencies between 0.07 and 0.5 Hz, transfer function estimates become unreliable with 5 s of data loss every 50 s. 2 s data loss only affects frequency bands above 0.15 Hz. Finally, accurate transfer function assessment of autoregulatory function can be achieved from time series as short as 1 min, although gain and coherence tend to be overestimated at higher frequencies.
Author ÓLaighin, Gearóid
Nakagawa, Kazuma
Serrador, Jorge M.
Sorond, Farzaneh A.
Jones, Edward
Deegan, Brian M.
AuthorAffiliation a Electrical & Electronic Engineering, NUI Galway, University Road, Galway, Ireland
b Bioelectronics Research Cluster, National Centre for Biomedical Engineering Science, NUI Galway, University Road, Galway, Ireland
e Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
f Department of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, United States
g War Related Illness & Injury Study Center, Veterans Biomedical Research Institute, NJ VA Health Care System, East Orange, NJ, United States
c Department of Neurology, Stroke Division, Brigham and Women’s Hospital, Boston, MA, United States
d Harvard Medical School, Boston, MA, United States
AuthorAffiliation_xml – name: a Electrical & Electronic Engineering, NUI Galway, University Road, Galway, Ireland
– name: e Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
– name: c Department of Neurology, Stroke Division, Brigham and Women’s Hospital, Boston, MA, United States
– name: d Harvard Medical School, Boston, MA, United States
– name: f Department of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, United States
– name: g War Related Illness & Injury Study Center, Veterans Biomedical Research Institute, NJ VA Health Care System, East Orange, NJ, United States
– name: b Bioelectronics Research Cluster, National Centre for Biomedical Engineering Science, NUI Galway, University Road, Galway, Ireland
Author_xml – sequence: 1
  givenname: Brian M.
  surname: Deegan
  fullname: Deegan, Brian M.
  email: b.deegan1@nuigalway.ie
  organization: Electrical & Electronic Engineering, NUI Galway, University Road, Galway, Ireland
– sequence: 2
  givenname: Jorge M.
  surname: Serrador
  fullname: Serrador, Jorge M.
  organization: Electrical & Electronic Engineering, NUI Galway, University Road, Galway, Ireland
– sequence: 3
  givenname: Kazuma
  surname: Nakagawa
  fullname: Nakagawa, Kazuma
  organization: Department of Neurology, Stroke Division, Brigham and Women's Hospital, Boston, MA, United States
– sequence: 4
  givenname: Edward
  surname: Jones
  fullname: Jones, Edward
  organization: Electrical & Electronic Engineering, NUI Galway, University Road, Galway, Ireland
– sequence: 5
  givenname: Farzaneh A.
  surname: Sorond
  fullname: Sorond, Farzaneh A.
  organization: Department of Neurology, Stroke Division, Brigham and Women's Hospital, Boston, MA, United States
– sequence: 6
  givenname: Gearóid
  surname: ÓLaighin
  fullname: ÓLaighin, Gearóid
  email: gearoid.olaighin@nuigalway.ie
  organization: Electrical & Electronic Engineering, NUI Galway, University Road, Galway, Ireland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24208212$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21239208$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1DAUjVARbQd-AbxBrGbwK3FmQauqPKVKLChry3FuZjy4drCTSvMHfDY3nWmBSqjdxLF9zvG9557j4iDEAEXxitEFo6x6u1lcQQth1a-3C06nU76gVD0pjlitxFxSQQ_wX5R0LkshDovjnDeUUikr8aw45IyLJaf1UfHrcg0Eug7sQGJHGh9jS_oEOY8JiDXeNckMLoZMTGjJkEzIFj_OePI-9r2HRLJbBdz6mDOJYYfp8Lwbg52oBPLgrswAeXrCQgLU9MSMQ0ywGv2N_vPiaWd8hhf7dVZ8__jh8vzz_OLrpy_nZxdzq5gY5hWrBGsrY0xTClt20qja0BJkxZUoVdPyRgGrWCnburP1Emo0oRbc0I5DqZZiVpzsdPuxQQ8tBKzX6z5hhWmro3H635vg1noVr7UUS8klR4E3e4EUf47Ymr5y2YL3JkAcs65VNZlbqYeRiOGSqknz5d9F3VVzOycEvN4DTMahdGixdfkPTiJoAs-KdzucTTiNBJ22brjxF3txXjOqp_zojb7Lj57yoxnXmB_kq3v82yceZp7tmIDDu3aQdLYOgoXWJQyXbqN7hMbJPQ3rXXDY8A_YQt7EMWHQsmY6I0F_m_I9xZthsvlSTjad_l_gUSX8BnUmErM
CitedBy_id crossref_primary_10_1088_1361_6579_abad49
crossref_primary_10_1038_s41393_017_0021_7
crossref_primary_10_1088_1361_6579_ab39d3
crossref_primary_10_1088_1361_6579_ac27b8
crossref_primary_10_1093_pnasnexus_pgae252
crossref_primary_10_1155_2018_7803426
crossref_primary_10_1177_0271678X211029049
crossref_primary_10_1007_s12028_021_01301_5
crossref_primary_10_3389_fphys_2014_00473
crossref_primary_10_1016_j_compbiomed_2019_103508
crossref_primary_10_1177_0271678X221119760
crossref_primary_10_1186_s12883_018_1025_4
crossref_primary_10_1088_1361_6579_aa76a9
crossref_primary_10_1007_s11517_019_02064_0
crossref_primary_10_1016_j_autneu_2020_102742
crossref_primary_10_1016_j_medengphy_2016_02_001
crossref_primary_10_1016_j_wneu_2023_10_046
crossref_primary_10_1371_journal_pone_0205393
crossref_primary_10_1016_j_medengphy_2014_02_001
crossref_primary_10_1152_japplphysiol_00231_2011
crossref_primary_10_1016_j_medengphy_2017_06_007
crossref_primary_10_1016_j_niox_2020_10_004
crossref_primary_10_1177_0271678X15626425
crossref_primary_10_1007_s00421_018_4036_3
Cites_doi 10.1161/hs1001.097225
10.1161/01.STR.28.9.1686
10.1136/hrt.82.3.365
10.1161/01.CIR.0000144472.08647.40
10.1161/01.STR.0000080936.36601.34
10.1161/01.STR.31.8.1897
10.1152/jappl.1998.85.3.1113
10.1161/STROKEAHA.108.545285
10.1088/0967-3334/24/1/303
10.1016/S0165-1838(99)00013-2
10.1088/0967-3334/19/3/001
10.1042/CS20050009
10.1097/00004647-199904000-00012
10.1161/01.STR.26.5.834
10.1227/00006123-199009000-00004
10.1161/01.HYP.26.2.315
10.1097/00004872-199209000-00010
10.1111/j.1475-097X.1993.tb00469.x
10.1161/01.STR.26.6.1014
10.1007/s10558-007-9044-6
10.1097/00004647-199803000-00010
10.1161/01.STR.26.10.1801
10.1152/jappl.2001.91.6.2493
10.1161/01.STR.20.1.45
10.1016/S0008-6363(98)00067-4
10.1093/bja/65.4.558
10.3171/jns.1982.57.6.0769
10.1152/japplphysiol.00471.2004
10.1109/10.508541
10.1093/cvr/19.3.139
10.1111/j.1749-6632.2001.tb03702.x
10.1097/MBP.0b013e3282c9ad2f
10.1152/ajpheart.00485.2004
ContentType Journal Article
Copyright 2010 IPEM
IPEM
2015 INIST-CNRS
Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
2010 IPEM. Published by Elsevier Ltd. All rights reserved. 2010
Copyright_xml – notice: 2010 IPEM
– notice: IPEM
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
– notice: 2010 IPEM. Published by Elsevier Ltd. All rights reserved. 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
DOI 10.1016/j.medengphy.2010.12.007
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database



MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
EndPage 562
ExternalDocumentID PMC4394242
21239208
24208212
10_1016_j_medengphy_2010_12_007
S1350453310002948
1_s2_0_S1350453310002948
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: K23 AG030967
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
AACTN
AAXKI
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c713t-61631d6aaab53c5f4a78a05e4627357bd2b7e16154d8fc89e8135832a0f2e5793
IEDL.DBID AIKHN
ISSN 1350-4533
1873-4030
IngestDate Thu Aug 21 18:29:37 EDT 2025
Thu Sep 04 22:58:08 EDT 2025
Fri Sep 05 11:29:31 EDT 2025
Mon Jul 21 05:46:04 EDT 2025
Mon Jul 21 09:13:14 EDT 2025
Thu Apr 24 22:52:18 EDT 2025
Tue Jul 01 04:24:44 EDT 2025
Fri Feb 23 02:29:19 EST 2024
Sun Feb 23 10:19:59 EST 2025
Tue Aug 26 16:32:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Physiocal
Cerebral autoregulation
Blood pressure
Transfer function
Cerebral blood flow
Data loss
Sonography
Doppler ultrasound study
Central nervous system
Calibration
Blood flow
Encephalon
Transcranial route
Self regulation
Arterial pressure
Hemodynamics
Biomedical engineering
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c713t-61631d6aaab53c5f4a78a05e4627357bd2b7e16154d8fc89e8135832a0f2e5793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1350453310002948
PMID 21239208
PQID 867324072
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4394242
proquest_miscellaneous_876239267
proquest_miscellaneous_867324072
pubmed_primary_21239208
pascalfrancis_primary_24208212
crossref_citationtrail_10_1016_j_medengphy_2010_12_007
crossref_primary_10_1016_j_medengphy_2010_12_007
elsevier_sciencedirect_doi_10_1016_j_medengphy_2010_12_007
elsevier_clinicalkeyesjournals_1_s2_0_S1350453310002948
elsevier_clinicalkey_doi_10_1016_j_medengphy_2010_12_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-06-01
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Kuo, Chern, Sheng, Wong, Hu (bib0190) 1998; 18
Paulson, Strandgaard, Edvinsson (bib0005) 1990; 2
Hughson, Edwards, O’Leary, Shoemaker (bib0065) 2001; 32
Tiecks, Lam, Aaslid, Newell (bib0010) 1995; 26
Panerai, Sammons, Smith, Rathbone, Bentley, Potter (bib0170) 2007; 12
Bos, van den Meiracker, Wesseling, Schalekamp (bib0120) 1995; 26
Diehl, Linden, Chalkiadaki, Diehl (bib0045) 1999; 76
Penaz (bib0100) 1973
Zhang, Zuckerman, Giller, Levine (bib0145) 1998; 274
Kurki, Piirainen, Kurki (bib0160) 1990; 65
Hu, Kuo, Wong, Luk, Chern, Hsu (bib0085) 1999; 19
Cencetti, Lagi, Cipriani, Fattorini, Bandinelli, Bernardi (bib0040) 1999; 82
Schondorf, Benoit, Stein (bib0050) 2001; 940
Reinhard, Muller, Guschlbauer, Timmer, Hetzel (bib0165) 2003; 24
Schondorf, Stein, Roberts, Benoit, Cupples (bib0140) 2001; 91
Giller (bib0095) 1990; 27
Aaslid, Lindegaard, Sorteberg, Nornes (bib0025) 1989; 20
Panerai, Kelsall, Rennie, Evans (bib0070) 1996; 43
Birch, Dirnhuber, Hartley-Davies, Iannotti, Neil-Dwyer (bib0080) 1995; 26
Imholz, Parati, Mancia, Wesseling (bib0115) 1992; 10
Blaber, Bondar, Stein, Dunphy, Moradshahi, Kassam (bib0135) 1997; 28
Haubrich, Kruska, Diehl, Moller-Hartmann, Klotzsch (bib0185) 2003; 34
Eames, Potter, Panerai (bib0180) 2005; 109
Zhang, Zuckerman, Levine (bib0035) 1998; 85
Tanaka, Thulesius (bib0155) 1993; 13
Aaslid, Markwalder, Nornes (bib0020) 1982; 57
Wesseling (bib0195) 1995; 36
Lipsitz, Mukai, Hamner, Gagnon, Babikian (bib0150) 2000; 31
Blaber, Bondar, Stein, Dunphy, Moradshahi, Kassam (bib0030) 1997; 28
Diehl, Linden, Lucke, Berlit (bib0075) 1995; 26
Nakagawa, Serrador, Larose, Moslehi, Lipsitz, Sorond (bib0125) 2009; 40
Panerai (bib0015) 1998; 19
Serrador, Sorond, Vyas, Gagnon, Iloputaife, Lipsitz (bib0060) 2005; 98
Panerai (bib0090) 2008; 8
Immink, van den Born, van Montfrans, Koopmans, Karemaker, van Lieshout (bib0130) 2004; 110
Schondorf, Stein, Roberts, Benoit, Cupples (bib0175) 2001; 91
Krishnamurthy, Wang, Bhakta, Bruce, Evans, Justice (bib0055) 2004; 287
Imholz, Wieling, van Montfrans, Wesseling (bib0105) 1998; 38
Wesseling, Settels, van der Hoeven, Nijboer, Butijn, Dorlas (bib0110) 1985; 19
Schondorf (10.1016/j.medengphy.2010.12.007_bib0175) 2001; 91
Serrador (10.1016/j.medengphy.2010.12.007_bib0060) 2005; 98
Hu (10.1016/j.medengphy.2010.12.007_bib0085) 1999; 19
Blaber (10.1016/j.medengphy.2010.12.007_bib0135) 1997; 28
Bos (10.1016/j.medengphy.2010.12.007_bib0120) 1995; 26
Tiecks (10.1016/j.medengphy.2010.12.007_bib0010) 1995; 26
Panerai (10.1016/j.medengphy.2010.12.007_bib0170) 2007; 12
Imholz (10.1016/j.medengphy.2010.12.007_bib0105) 1998; 38
Schondorf (10.1016/j.medengphy.2010.12.007_bib0140) 2001; 91
Panerai (10.1016/j.medengphy.2010.12.007_bib0015) 1998; 19
Tanaka (10.1016/j.medengphy.2010.12.007_bib0155) 1993; 13
Wesseling (10.1016/j.medengphy.2010.12.007_bib0110) 1985; 19
Diehl (10.1016/j.medengphy.2010.12.007_bib0075) 1995; 26
Kurki (10.1016/j.medengphy.2010.12.007_bib0160) 1990; 65
Cencetti (10.1016/j.medengphy.2010.12.007_bib0040) 1999; 82
Aaslid (10.1016/j.medengphy.2010.12.007_bib0020) 1982; 57
Eames (10.1016/j.medengphy.2010.12.007_bib0180) 2005; 109
Haubrich (10.1016/j.medengphy.2010.12.007_bib0185) 2003; 34
Zhang (10.1016/j.medengphy.2010.12.007_bib0145) 1998; 274
Aaslid (10.1016/j.medengphy.2010.12.007_bib0025) 1989; 20
Giller (10.1016/j.medengphy.2010.12.007_bib0095) 1990; 27
Penaz (10.1016/j.medengphy.2010.12.007_bib0100) 1973
Panerai (10.1016/j.medengphy.2010.12.007_bib0070) 1996; 43
Immink (10.1016/j.medengphy.2010.12.007_bib0130) 2004; 110
Schondorf (10.1016/j.medengphy.2010.12.007_bib0050) 2001; 940
Reinhard (10.1016/j.medengphy.2010.12.007_bib0165) 2003; 24
Kuo (10.1016/j.medengphy.2010.12.007_bib0190) 1998; 18
Imholz (10.1016/j.medengphy.2010.12.007_bib0115) 1992; 10
Diehl (10.1016/j.medengphy.2010.12.007_bib0045) 1999; 76
Paulson (10.1016/j.medengphy.2010.12.007_bib0005) 1990; 2
Zhang (10.1016/j.medengphy.2010.12.007_bib0035) 1998; 85
Wesseling (10.1016/j.medengphy.2010.12.007_bib0195) 1995; 36
Hughson (10.1016/j.medengphy.2010.12.007_bib0065) 2001; 32
Nakagawa (10.1016/j.medengphy.2010.12.007_bib0125) 2009; 40
Krishnamurthy (10.1016/j.medengphy.2010.12.007_bib0055) 2004; 287
Blaber (10.1016/j.medengphy.2010.12.007_bib0030) 1997; 28
Panerai (10.1016/j.medengphy.2010.12.007_bib0090) 2008; 8
Lipsitz (10.1016/j.medengphy.2010.12.007_bib0150) 2000; 31
Birch (10.1016/j.medengphy.2010.12.007_bib0080) 1995; 26
9735883 - Physiol Meas. 1998 Aug;19(3):305-38
1328379 - J Hypertens. 1992 Sep;10(9):979-84
11717210 - J Appl Physiol (1985). 2001 Dec;91(6):2493-502
7762016 - Stroke. 1995 Jun;26(6):1014-9
7740576 - Stroke. 1995 May;26(5):834-7
11458706 - Ann N Y Acad Sci. 2001 Jun;940:514-26
7570728 - Stroke. 1995 Oct;26(10 ):1801-4
10412840 - J Auton Nerv Syst. 1999 May 28;76(2-3):159-66
15361517 - J Appl Physiol (1985). 2005 Jan;98(1):151-9
10926954 - Stroke. 2000 Aug;31(8):1897-903
9498848 - J Cereb Blood Flow Metab. 1998 Mar;18(3):311-8
10455091 - Heart. 1999 Sep;82(3):365-72
15773816 - Clin Sci (Lond). 2005 Jul;109 (1):109-15
9729590 - J Appl Physiol (1985). 1998 Sep;85(3):1113-22
9216150 - IEEE Trans Biomed Eng. 1996 Aug;43(8):779-88
19359628 - Stroke. 2009 Jun;40(6):2062-7
2234328 - Neurosurgery. 1990 Sep;27(3):362-8
7143059 - J Neurosurg. 1982 Dec;57(6):769-74
18004105 - Blood Press Monit. 2007 Dec;12(6):369-76
9747429 - Cardiovasc Res. 1998 Jun;38(3):605-16
15466625 - Circulation. 2004 Oct 12;110(15):2241-5
7635541 - Hypertension. 1995 Aug;26(2):315-20
8222538 - Clin Physiol. 1993 Sep;13(5):535-45
2248827 - Br J Anaesth. 1990 Oct;65(4):558-63
3986857 - Cardiovasc Res. 1985 Mar;19(3):139-45
2201348 - Cerebrovasc Brain Metab Rev. 1990 Summer;2(2):161-92
12843352 - Stroke. 2003 Aug;34(8):1881-5
9458872 - Am J Physiol. 1998 Jan;274(1 Pt 2):H233-41
18041584 - Cardiovasc Eng. 2008 Mar;8(1):42-59
2492126 - Stroke. 1989 Jan;20(1):45-52
15297255 - Am J Physiol Heart Circ Physiol. 2004 Dec;287(6):H2510-7
12636185 - Physiol Meas. 2003 Feb;24(1):27-43
9303010 - Stroke. 1997 Sep;28(9):1686-92
11588333 - Stroke. 2001 Oct;32(10 ):2403-8
10197516 - J Cereb Blood Flow Metab. 1999 Apr;19(4):460-5
References_xml – volume: 91
  start-page: 2493
  year: 2001
  end-page: 2502
  ident: bib0140
  article-title: Dynamic cerebral autoregulation is preserved in neurally mediated syncope
  publication-title: J Appl Physiol
– volume: 940
  start-page: 514
  year: 2001
  end-page: 526
  ident: bib0050
  article-title: Cerebral autoregulation in orthostatic intolerance
  publication-title: Ann N Y Acad Sci
– volume: 12
  start-page: 369
  year: 2007
  end-page: 376
  ident: bib0170
  article-title: Transient drifts between Finapres and continuous intra-aortic measurements of blood pressure
  publication-title: Blood Press Monit
– volume: 2
  start-page: 161
  year: 1990
  end-page: 192
  ident: bib0005
  article-title: Cerebral autoregulation
  publication-title: Cerebrovasc Brain Metab Rev
– volume: 76
  start-page: 159
  year: 1999
  end-page: 166
  ident: bib0045
  article-title: Cerebrovascular mechanisms in neurocardiogenic syncope with and without postural tachycardia syndrome
  publication-title: J Auton Nerv Syst
– volume: 19
  start-page: 460
  year: 1999
  end-page: 465
  ident: bib0085
  article-title: Transfer function analysis of cerebral hemodynamics in patients with carotid stenosis
  publication-title: J Cereb Blood Flow Metab
– volume: 57
  start-page: 769
  year: 1982
  end-page: 774
  ident: bib0020
  article-title: Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries
  publication-title: J Neurosurg
– volume: 20
  start-page: 45
  year: 1989
  end-page: 52
  ident: bib0025
  article-title: Cerebral autoregulation dynamics in humans
  publication-title: Stroke
– volume: 98
  start-page: 151
  year: 2005
  end-page: 159
  ident: bib0060
  article-title: Cerebral pressure-flow relations in hypertensive elderly humans: transfer gain in different frequency domains
  publication-title: J Appl Physiol
– volume: 43
  start-page: 779
  year: 1996
  end-page: 788
  ident: bib0070
  article-title: Analysis of cerebral blood flow autoregulation in neonates
  publication-title: IEEE Trans Biomed Eng
– volume: 26
  start-page: 315
  year: 1995
  end-page: 320
  ident: bib0120
  article-title: Effect of regional and systemic changes in vasomotor tone on finger pressure amplification
  publication-title: Hypertension
– volume: 31
  start-page: 1897
  year: 2000
  end-page: 1903
  ident: bib0150
  article-title: Dynamic regulation of middle cerebral artery blood flow velocity in aging and hypertension
  publication-title: Stroke
– volume: 91
  start-page: 2493
  year: 2001
  ident: bib0175
  article-title: Dynamic cerebral autoregulation is preserved in neurally mediated syncope
  publication-title: J Appl Physiol
– volume: 28
  start-page: 1686
  year: 1997
  end-page: 1692
  ident: bib0135
  article-title: Transfer function analysis of cerebral autoregulation dynamics in autonomic failure patients
  publication-title: Stroke
– volume: 26
  start-page: 1801
  year: 1995
  end-page: 1804
  ident: bib0075
  article-title: Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation
  publication-title: Stroke
– year: 1973
  ident: bib0100
  article-title: Photoelectric measurement of blood pressure, volume and flow in the finger
  publication-title: Book photoelectric measurement of blood pressure, volume and flow in the finger, vol. 104, Series photoelectric measurement of blood pressure, volume and flow in the finger
– volume: 24
  start-page: 27
  year: 2003
  end-page: 43
  ident: bib0165
  article-title: Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation—a comparison between spontaneous and respiratory-induced oscillations
  publication-title: Physiol Meas
– volume: 65
  start-page: 558
  year: 1990
  end-page: 563
  ident: bib0160
  article-title: Non-invasive monitoring of finger arterial pressure in patients with Raynaud's phenomenon: effects of exposure to cold
  publication-title: Br J Anaesth
– volume: 19
  start-page: 139
  year: 1985
  end-page: 145
  ident: bib0110
  article-title: Effects of peripheral vasoconstriction on the measurement of blood pressure in a finger
  publication-title: Cardiovasc Res
– volume: 19
  start-page: 305
  year: 1998
  end-page: 338
  ident: bib0015
  article-title: Assessment of cerebral pressure autoregulation in humans—a review of measurement methods
  publication-title: Physiol Meas
– volume: 10
  start-page: 979
  year: 1992
  end-page: 984
  ident: bib0115
  article-title: Effects of graded vasoconstriction upon the measurement of finger arterial pressure
  publication-title: J Hypertens
– volume: 28
  start-page: 1686
  year: 1997
  ident: bib0030
  article-title: Transfer function analysis of cerebral autoregulation dynamics in autonomic failure patients
  publication-title: Stroke
– volume: 85
  start-page: 1113
  year: 1998
  end-page: 1122
  ident: bib0035
  article-title: Deterioration of cerebral autoregulation during orthostatic stress: insights from the frequency domain
  publication-title: J Appl Physiol
– volume: 82
  start-page: 365
  year: 1999
  ident: bib0040
  article-title: Autonomic control of the cerebral circulation during normal and impaired peripheral circulatory control
  publication-title: Heart
– volume: 13
  start-page: 535
  year: 1993
  end-page: 545
  ident: bib0155
  article-title: Effect of temperature on finger artery pressure evaluated by volume clamp technique
  publication-title: Clin Physiol
– volume: 36
  start-page: 50
  year: 1995
  end-page: 66
  ident: bib0195
  article-title: A century of noninvasive arterial pressure measurement: from Marey to Peñáz and Finapres
  publication-title: Homeostasis
– volume: 26
  start-page: 834
  year: 1995
  end-page: 837
  ident: bib0080
  article-title: Assessment of autoregulation by means of periodic changes in blood pressure
  publication-title: Stroke
– volume: 38
  start-page: 605
  year: 1998
  end-page: 616
  ident: bib0105
  article-title: Fifteen years experience with finger arterial pressure monitoring: assessment of the technology
  publication-title: Cardiovasc Res
– volume: 32
  start-page: 2403
  year: 2001
  end-page: 2408
  ident: bib0065
  article-title: Critical analysis of cerebrovascular autoregulation during repeated head-up tilt
  publication-title: Stroke
– volume: 8
  start-page: 42
  year: 2008
  end-page: 59
  ident: bib0090
  article-title: Cerebral autoregulation: from models to clinical applications
  publication-title: Cardiovasc Eng
– volume: 40
  start-page: 2062
  year: 2009
  end-page: 2067
  ident: bib0125
  article-title: Autoregulation in the posterior circulation is altered by the metabolic state of the visual cortex
  publication-title: Stroke
– volume: 274
  start-page: H233
  year: 1998
  end-page: H241
  ident: bib0145
  article-title: Transfer function analysis of dynamic cerebral autoregulation in humans
  publication-title: Am J Physiol
– volume: 287
  start-page: H2510
  year: 2004
  ident: bib0055
  article-title: Dynamic cardiorespiratory interaction during head-up tilt-mediated presyncope
  publication-title: Am J Phys Heart Circ Physiol
– volume: 18
  start-page: 311
  year: 1998
  end-page: 318
  ident: bib0190
  article-title: Frequency domain analysis of cerebral blood flow velocity and its correlation with arterial blood pressure
  publication-title: J Cereb Blood Flow Metab
– volume: 110
  start-page: 2241
  year: 2004
  end-page: 2245
  ident: bib0130
  article-title: Impaired cerebral autoregulation in patients with malignant hypertension
  publication-title: Circulation
– volume: 34
  start-page: 1881
  year: 2003
  end-page: 1885
  ident: bib0185
  article-title: Dynamic autoregulation testing in patients with middle cerebral artery stenosis
  publication-title: Stroke
– volume: 26
  start-page: 1014
  year: 1995
  end-page: 1019
  ident: bib0010
  article-title: Comparison of static and dynamic cerebral autoregulation measurements
  publication-title: Stroke
– volume: 27
  start-page: 362
  year: 1990
  end-page: 368
  ident: bib0095
  article-title: The frequency-dependent behavior of cerebral autoregulation
  publication-title: Neurosurgery
– volume: 109
  start-page: 109
  year: 2005
  end-page: 115
  ident: bib0180
  article-title: Assessment of cerebral autoregulation from ectopic heartbeats
  publication-title: Clin Sci (Lond)
– volume: 32
  start-page: 2403
  year: 2001
  ident: 10.1016/j.medengphy.2010.12.007_bib0065
  article-title: Critical analysis of cerebrovascular autoregulation during repeated head-up tilt
  publication-title: Stroke
  doi: 10.1161/hs1001.097225
– volume: 28
  start-page: 1686
  year: 1997
  ident: 10.1016/j.medengphy.2010.12.007_bib0030
  article-title: Transfer function analysis of cerebral autoregulation dynamics in autonomic failure patients
  publication-title: Stroke
  doi: 10.1161/01.STR.28.9.1686
– volume: 82
  start-page: 365
  year: 1999
  ident: 10.1016/j.medengphy.2010.12.007_bib0040
  article-title: Autonomic control of the cerebral circulation during normal and impaired peripheral circulatory control
  publication-title: Heart
  doi: 10.1136/hrt.82.3.365
– volume: 110
  start-page: 2241
  year: 2004
  ident: 10.1016/j.medengphy.2010.12.007_bib0130
  article-title: Impaired cerebral autoregulation in patients with malignant hypertension
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000144472.08647.40
– volume: 28
  start-page: 1686
  year: 1997
  ident: 10.1016/j.medengphy.2010.12.007_bib0135
  article-title: Transfer function analysis of cerebral autoregulation dynamics in autonomic failure patients
  publication-title: Stroke
  doi: 10.1161/01.STR.28.9.1686
– volume: 274
  start-page: H233
  year: 1998
  ident: 10.1016/j.medengphy.2010.12.007_bib0145
  article-title: Transfer function analysis of dynamic cerebral autoregulation in humans
  publication-title: Am J Physiol
– volume: 34
  start-page: 1881
  year: 2003
  ident: 10.1016/j.medengphy.2010.12.007_bib0185
  article-title: Dynamic autoregulation testing in patients with middle cerebral artery stenosis
  publication-title: Stroke
  doi: 10.1161/01.STR.0000080936.36601.34
– volume: 31
  start-page: 1897
  year: 2000
  ident: 10.1016/j.medengphy.2010.12.007_bib0150
  article-title: Dynamic regulation of middle cerebral artery blood flow velocity in aging and hypertension
  publication-title: Stroke
  doi: 10.1161/01.STR.31.8.1897
– volume: 85
  start-page: 1113
  year: 1998
  ident: 10.1016/j.medengphy.2010.12.007_bib0035
  article-title: Deterioration of cerebral autoregulation during orthostatic stress: insights from the frequency domain
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1998.85.3.1113
– year: 1973
  ident: 10.1016/j.medengphy.2010.12.007_bib0100
  article-title: Photoelectric measurement of blood pressure, volume and flow in the finger
– volume: 40
  start-page: 2062
  year: 2009
  ident: 10.1016/j.medengphy.2010.12.007_bib0125
  article-title: Autoregulation in the posterior circulation is altered by the metabolic state of the visual cortex
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.108.545285
– volume: 36
  start-page: 50
  year: 1995
  ident: 10.1016/j.medengphy.2010.12.007_bib0195
  article-title: A century of noninvasive arterial pressure measurement: from Marey to Peñáz and Finapres
  publication-title: Homeostasis
– volume: 24
  start-page: 27
  year: 2003
  ident: 10.1016/j.medengphy.2010.12.007_bib0165
  article-title: Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation—a comparison between spontaneous and respiratory-induced oscillations
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/24/1/303
– volume: 76
  start-page: 159
  year: 1999
  ident: 10.1016/j.medengphy.2010.12.007_bib0045
  article-title: Cerebrovascular mechanisms in neurocardiogenic syncope with and without postural tachycardia syndrome
  publication-title: J Auton Nerv Syst
  doi: 10.1016/S0165-1838(99)00013-2
– volume: 19
  start-page: 305
  year: 1998
  ident: 10.1016/j.medengphy.2010.12.007_bib0015
  article-title: Assessment of cerebral pressure autoregulation in humans—a review of measurement methods
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/19/3/001
– volume: 109
  start-page: 109
  year: 2005
  ident: 10.1016/j.medengphy.2010.12.007_bib0180
  article-title: Assessment of cerebral autoregulation from ectopic heartbeats
  publication-title: Clin Sci (Lond)
  doi: 10.1042/CS20050009
– volume: 19
  start-page: 460
  year: 1999
  ident: 10.1016/j.medengphy.2010.12.007_bib0085
  article-title: Transfer function analysis of cerebral hemodynamics in patients with carotid stenosis
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/00004647-199904000-00012
– volume: 26
  start-page: 834
  year: 1995
  ident: 10.1016/j.medengphy.2010.12.007_bib0080
  article-title: Assessment of autoregulation by means of periodic changes in blood pressure
  publication-title: Stroke
  doi: 10.1161/01.STR.26.5.834
– volume: 27
  start-page: 362
  year: 1990
  ident: 10.1016/j.medengphy.2010.12.007_bib0095
  article-title: The frequency-dependent behavior of cerebral autoregulation
  publication-title: Neurosurgery
  doi: 10.1227/00006123-199009000-00004
– volume: 26
  start-page: 315
  year: 1995
  ident: 10.1016/j.medengphy.2010.12.007_bib0120
  article-title: Effect of regional and systemic changes in vasomotor tone on finger pressure amplification
  publication-title: Hypertension
  doi: 10.1161/01.HYP.26.2.315
– volume: 10
  start-page: 979
  year: 1992
  ident: 10.1016/j.medengphy.2010.12.007_bib0115
  article-title: Effects of graded vasoconstriction upon the measurement of finger arterial pressure
  publication-title: J Hypertens
  doi: 10.1097/00004872-199209000-00010
– volume: 13
  start-page: 535
  year: 1993
  ident: 10.1016/j.medengphy.2010.12.007_bib0155
  article-title: Effect of temperature on finger artery pressure evaluated by volume clamp technique
  publication-title: Clin Physiol
  doi: 10.1111/j.1475-097X.1993.tb00469.x
– volume: 26
  start-page: 1014
  year: 1995
  ident: 10.1016/j.medengphy.2010.12.007_bib0010
  article-title: Comparison of static and dynamic cerebral autoregulation measurements
  publication-title: Stroke
  doi: 10.1161/01.STR.26.6.1014
– volume: 8
  start-page: 42
  year: 2008
  ident: 10.1016/j.medengphy.2010.12.007_bib0090
  article-title: Cerebral autoregulation: from models to clinical applications
  publication-title: Cardiovasc Eng
  doi: 10.1007/s10558-007-9044-6
– volume: 18
  start-page: 311
  year: 1998
  ident: 10.1016/j.medengphy.2010.12.007_bib0190
  article-title: Frequency domain analysis of cerebral blood flow velocity and its correlation with arterial blood pressure
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/00004647-199803000-00010
– volume: 26
  start-page: 1801
  year: 1995
  ident: 10.1016/j.medengphy.2010.12.007_bib0075
  article-title: Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation
  publication-title: Stroke
  doi: 10.1161/01.STR.26.10.1801
– volume: 91
  start-page: 2493
  year: 2001
  ident: 10.1016/j.medengphy.2010.12.007_bib0175
  article-title: Dynamic cerebral autoregulation is preserved in neurally mediated syncope
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.2001.91.6.2493
– volume: 20
  start-page: 45
  year: 1989
  ident: 10.1016/j.medengphy.2010.12.007_bib0025
  article-title: Cerebral autoregulation dynamics in humans
  publication-title: Stroke
  doi: 10.1161/01.STR.20.1.45
– volume: 38
  start-page: 605
  year: 1998
  ident: 10.1016/j.medengphy.2010.12.007_bib0105
  article-title: Fifteen years experience with finger arterial pressure monitoring: assessment of the technology
  publication-title: Cardiovasc Res
  doi: 10.1016/S0008-6363(98)00067-4
– volume: 65
  start-page: 558
  year: 1990
  ident: 10.1016/j.medengphy.2010.12.007_bib0160
  article-title: Non-invasive monitoring of finger arterial pressure in patients with Raynaud's phenomenon: effects of exposure to cold
  publication-title: Br J Anaesth
  doi: 10.1093/bja/65.4.558
– volume: 57
  start-page: 769
  year: 1982
  ident: 10.1016/j.medengphy.2010.12.007_bib0020
  article-title: Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries
  publication-title: J Neurosurg
  doi: 10.3171/jns.1982.57.6.0769
– volume: 98
  start-page: 151
  year: 2005
  ident: 10.1016/j.medengphy.2010.12.007_bib0060
  article-title: Cerebral pressure-flow relations in hypertensive elderly humans: transfer gain in different frequency domains
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00471.2004
– volume: 43
  start-page: 779
  year: 1996
  ident: 10.1016/j.medengphy.2010.12.007_bib0070
  article-title: Analysis of cerebral blood flow autoregulation in neonates
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.508541
– volume: 91
  start-page: 2493
  year: 2001
  ident: 10.1016/j.medengphy.2010.12.007_bib0140
  article-title: Dynamic cerebral autoregulation is preserved in neurally mediated syncope
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.2001.91.6.2493
– volume: 19
  start-page: 139
  year: 1985
  ident: 10.1016/j.medengphy.2010.12.007_bib0110
  article-title: Effects of peripheral vasoconstriction on the measurement of blood pressure in a finger
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/19.3.139
– volume: 2
  start-page: 161
  year: 1990
  ident: 10.1016/j.medengphy.2010.12.007_bib0005
  article-title: Cerebral autoregulation
  publication-title: Cerebrovasc Brain Metab Rev
– volume: 940
  start-page: 514
  year: 2001
  ident: 10.1016/j.medengphy.2010.12.007_bib0050
  article-title: Cerebral autoregulation in orthostatic intolerance
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.2001.tb03702.x
– volume: 12
  start-page: 369
  year: 2007
  ident: 10.1016/j.medengphy.2010.12.007_bib0170
  article-title: Transient drifts between Finapres and continuous intra-aortic measurements of blood pressure
  publication-title: Blood Press Monit
  doi: 10.1097/MBP.0b013e3282c9ad2f
– volume: 287
  start-page: H2510
  year: 2004
  ident: 10.1016/j.medengphy.2010.12.007_bib0055
  article-title: Dynamic cardiorespiratory interaction during head-up tilt-mediated presyncope
  publication-title: Am J Phys Heart Circ Physiol
  doi: 10.1152/ajpheart.00485.2004
– reference: 15773816 - Clin Sci (Lond). 2005 Jul;109 (1):109-15
– reference: 10926954 - Stroke. 2000 Aug;31(8):1897-903
– reference: 12636185 - Physiol Meas. 2003 Feb;24(1):27-43
– reference: 9729590 - J Appl Physiol (1985). 1998 Sep;85(3):1113-22
– reference: 7740576 - Stroke. 1995 May;26(5):834-7
– reference: 10412840 - J Auton Nerv Syst. 1999 May 28;76(2-3):159-66
– reference: 8222538 - Clin Physiol. 1993 Sep;13(5):535-45
– reference: 2492126 - Stroke. 1989 Jan;20(1):45-52
– reference: 18004105 - Blood Press Monit. 2007 Dec;12(6):369-76
– reference: 15466625 - Circulation. 2004 Oct 12;110(15):2241-5
– reference: 2248827 - Br J Anaesth. 1990 Oct;65(4):558-63
– reference: 10455091 - Heart. 1999 Sep;82(3):365-72
– reference: 7570728 - Stroke. 1995 Oct;26(10 ):1801-4
– reference: 15361517 - J Appl Physiol (1985). 2005 Jan;98(1):151-9
– reference: 11458706 - Ann N Y Acad Sci. 2001 Jun;940:514-26
– reference: 19359628 - Stroke. 2009 Jun;40(6):2062-7
– reference: 9735883 - Physiol Meas. 1998 Aug;19(3):305-38
– reference: 1328379 - J Hypertens. 1992 Sep;10(9):979-84
– reference: 10197516 - J Cereb Blood Flow Metab. 1999 Apr;19(4):460-5
– reference: 11717210 - J Appl Physiol (1985). 2001 Dec;91(6):2493-502
– reference: 7635541 - Hypertension. 1995 Aug;26(2):315-20
– reference: 11588333 - Stroke. 2001 Oct;32(10 ):2403-8
– reference: 9216150 - IEEE Trans Biomed Eng. 1996 Aug;43(8):779-88
– reference: 7762016 - Stroke. 1995 Jun;26(6):1014-9
– reference: 2234328 - Neurosurgery. 1990 Sep;27(3):362-8
– reference: 9498848 - J Cereb Blood Flow Metab. 1998 Mar;18(3):311-8
– reference: 2201348 - Cerebrovasc Brain Metab Rev. 1990 Summer;2(2):161-92
– reference: 9303010 - Stroke. 1997 Sep;28(9):1686-92
– reference: 7143059 - J Neurosurg. 1982 Dec;57(6):769-74
– reference: 3986857 - Cardiovasc Res. 1985 Mar;19(3):139-45
– reference: 9458872 - Am J Physiol. 1998 Jan;274(1 Pt 2):H233-41
– reference: 18041584 - Cardiovasc Eng. 2008 Mar;8(1):42-59
– reference: 15297255 - Am J Physiol Heart Circ Physiol. 2004 Dec;287(6):H2510-7
– reference: 12843352 - Stroke. 2003 Aug;34(8):1881-5
– reference: 9747429 - Cardiovasc Res. 1998 Jun;38(3):605-16
SSID ssj0004463
Score 2.096048
Snippet There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres...
Abstract There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 553
SubjectTerms Biological and medical sciences
Blood Pressure
Brain - blood supply
Brain - physiology
Calibration
Cardiovascular system
Cerebral autoregulation
Cerebral blood flow
Data loss
Female
Humans
Investigative techniques, diagnostic techniques (general aspects)
Linear Models
Male
Medical sciences
Middle Aged
Physiocal
Radiology
Signal Processing, Computer-Assisted
Transfer function
Ultrasonic investigative techniques
Ultrasonography, Doppler, Transcranial
Title The effect of blood pressure calibrations and transcranial Doppler signal loss on transfer function estimates of cerebral autoregulation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453310002948
https://www.clinicalkey.es/playcontent/1-s2.0-S1350453310002948
https://dx.doi.org/10.1016/j.medengphy.2010.12.007
https://www.ncbi.nlm.nih.gov/pubmed/21239208
https://www.proquest.com/docview/867324072
https://www.proquest.com/docview/876239267
https://pubmed.ncbi.nlm.nih.gov/PMC4394242
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7tdiUeQgjKqzwqH7iGxnnYCbdVYVVAuxdYaW-W4zhLUUmqpr1y5mczkzjZDVQsEpdISTzxYyYzn-3xDMBrLsMol2mO09RIehHnxkPUajyZpNrksc2EoMPJp2dicR59vIgvDmDenYUht0qn-1ud3mhr92TmRnO2Xi5nn3kYIx4JmxXqII2SQzgKwlTEIzg6_vBpcXZ1PDJqEqpReY8IBm5eaHNseYldat28aGmQUsvuN1L31rrGoSvanBf7QOnvvpXXjNXJA7jvUCY7bjvyEA5sOYbb8y652xjuXotDOIZbp26H_RH8RLlhrZMHqwrW-LWzxll2t7EMW0XT60ZWmS5ztiVTZ_CCYszeVQhp7YaRTwjerrBrrCrbMgU-JxtKpIwie3wnkEtVGLuhzesV0xROwV66fGKP4fzk_Zf5wnPZGjyDE90tzkFFyHOhtc7i0MRFpGWi_dhGAhFSLLM8yKQlfBnlSWGS1CbIENQn2i8CG6OaeAKjsirtM2A4qRM2peBkfk7BLBHCJSYVMiysMDLjExAde5Rxocwpo8ZKdT5r31TPV0V8VTxQyNcJ-D3huo3mcTNJ0vFfdYdVUb0qtDg3k8p9pLZ2aqJWXNVYUv0hyhN421MO_oZ_q3Y6ENO-pwG5UiBUmQDr5Fah2NEOkS5ttatVgmPchMz7SxG0noipBVbztJX0q-9zeuNj6-XgH-gLUCjz4Zty-bUJaU7ns7F5z_-n3y_gTrvgT0tkL2G03ezsK0SM22wKh29-8KnTC78AUrlutA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTmJDCEFhUD6GH3iNmk874W0qTB1b-8Im7c1yHGcUlaRq2v-BP5u7xMkWqBgSL5WS-Go7d7n7nX2-A_jgiSDMRJKhmxoKJ_Q87SBq1Y6IE6WzyKSc0-Hk2ZxPr8Iv19H1HkzaszAUVml1f6PTa21t74zt2xyvFovxVy-IEI8E9Qq1n4TxA9gPI_T2BrB_cnY-nd8ejwzrgmrU3iGCXpgX2hxT3OCUmjAvWhqk0rK7jdTjlarw1eVNzYtdoPT32Mo7xur0KTyxKJOdNBN5BnumGMLBpC3uNoRHd_IQDuHhzO6wP4efKDesCfJgZc7quHZWB8tu14bhqMi9rmWVqSJjGzJ1Gn9QjNmnEiGtWTOKCcHLJU6NlUXTJsf7ZEOJlFFmjx8EcqkLbda0eb1kitIpmBtbT-wFXJ1-vpxMHVutwdHo6G7QB-WBl3GlVBoFOspDJWLlRibkiJAikWZ-KgzhyzCLcx0nJkaGoD5Rbu6bCNXEEQyKsjCvgKFTx01CycncjJJZIoSLdcJFkBuuReqNgLfskdqmMqeKGkvZxqx9lx1fJfFVer5Evo7A7QhXTTaP-0nilv-yPayK6lWixbmfVOwiNZVVE5X0ZIUt5R-iPIKPHWXva_i3bo97YtrN1KdQCoQqI2Ct3EoUO9ohUoUpt5WM8R3XKfP-0gStJ2Jqjt28bCT99v89euLi6EXvG-gaUCrz_pNi8a1OaU7ns3F4r_9n3u_hYHo5u5AXZ_PzN3DYLP7TctlbGGzWW_MO0eMmPbba4RcQpnCj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+blood+pressure+calibrations+and+transcranial+Doppler+signal+loss+on+transfer+function+estimates+of+cerebral+autoregulation&rft.jtitle=Medical+engineering+%26+physics&rft.au=Deegan%2C+Brian+M.&rft.au=Serrador%2C+Jorge+M.&rft.au=Nakagawa%2C+Kazuma&rft.au=Jones%2C+Edward&rft.date=2011-06-01&rft.issn=1350-4533&rft.volume=33&rft.issue=5&rft.spage=553&rft.epage=562&rft_id=info:doi/10.1016%2Fj.medengphy.2010.12.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_medengphy_2010_12_007
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453311X0005X%2Fcov150h.gif