The effect of blood pressure calibrations and transcranial Doppler signal loss on transfer function estimates of cerebral autoregulation
There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism (“physiocal”) causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We...
Saved in:
Published in | Medical engineering & physics Vol. 33; no. 5; pp. 553 - 562 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.06.2011
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1350-4533 1873-4030 1873-4030 |
DOI | 10.1016/j.medengphy.2010.12.007 |
Cover
Abstract | There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism (“physiocal”) causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We assessed the effects of “physiocals” and TCD signal loss on transfer function estimates in recordings of 45 healthy subjects. We added artificial “physiocals” and removed sections of TCD signal from 5
min Finapres and TCD recordings. We also compared transfer function results from 5
min time series with time series as short as 1
min. Accurate transfer function estimates can be achieved in the 0.03–0.07
Hz band using beat-by-beat data with linear interpolation, while data loss is less than 10
s. At frequencies between 0.07 and 0.5
Hz, transfer function estimates become unreliable with 5
s of data loss every 50
s. 2
s data loss only affects frequency bands above 0.15
Hz. Finally, accurate transfer function assessment of autoregulatory function can be achieved from time series as short as 1
min, although gain and coherence tend to be overestimated at higher frequencies. |
---|---|
AbstractList | There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism ("physiocal") causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We assessed the effects of "physiocals" and TCD signal loss on transfer function estimates in recordings of 45 healthy subjects. We added artificial "physiocals" and removed sections of TCD signal from 5 min Finapres and TCD recordings. We also compared transfer function results from 5 min time series with time series as short as 1 min. Accurate transfer function estimates can be achieved in the 0.03-0.07 Hz band using beat-by-beat data with linear interpolation, while data loss is less than 10 s. At frequencies between 0.07 and 0.5 Hz, transfer function estimates become unreliable with 5 s of data loss every 50 s. 2 s data loss only affects frequency bands above 0.15 Hz. Finally, accurate transfer function assessment of autoregulatory function can be achieved from time series as short as 1 min, although gain and coherence tend to be overestimated at higher frequencies. There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism (“physiocal”) causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We assessed the effects of “physiocals” and TCD signal loss on transfer function estimates in recordings of 45 healthy subjects. We added artificial “physiocals” and removed sections of TCD signal from 5 min Finapres and TCD recordings. We also compared transfer function results from 5 min time series with time series as short as 1 min. Accurate transfer function estimates can be achieved in the 0.03–0.07 Hz band using beat-by-beat data with linear interpolation, while data loss is less than 10 s. At frequencies between 0.07 and 0.5 Hz, transfer function estimates become unreliable with 5 s of data loss every 50 s. 2 s data loss only affects frequency bands above 0.15 Hz. Finally, accurate transfer function assessment of autoregulatory function can be achieved from time series as short as 1 min, although gain and coherence tend to be overestimated at higher frequencies. There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism ("physiocal") causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We assessed the effects of "physiocals" and TCD signal loss on transfer function estimates in recordings of 45 healthy subjects. We added artificial "physiocals" and removed sections of TCD signal from 5 min Finapres and TCD recordings. We also compared transfer function results from 5 min time series with time series as short as 1 min. Accurate transfer function estimates can be achieved in the 0.03-0.07 Hz band using beat-by-beat data with linear interpolation, while data loss is less than 10s. At frequencies between 0.07 and 0.5 Hz, transfer function estimates become unreliable with 5s of data loss every 50s. 2s data loss only affects frequency bands above 0.15Hz. Finally, accurate transfer function assessment of autoregulatory function can be achieved from time series as short as 1min, although gain and coherence tend to be overestimated at higher frequencies.There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism ("physiocal") causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We assessed the effects of "physiocals" and TCD signal loss on transfer function estimates in recordings of 45 healthy subjects. We added artificial "physiocals" and removed sections of TCD signal from 5 min Finapres and TCD recordings. We also compared transfer function results from 5 min time series with time series as short as 1 min. Accurate transfer function estimates can be achieved in the 0.03-0.07 Hz band using beat-by-beat data with linear interpolation, while data loss is less than 10s. At frequencies between 0.07 and 0.5 Hz, transfer function estimates become unreliable with 5s of data loss every 50s. 2s data loss only affects frequency bands above 0.15Hz. Finally, accurate transfer function assessment of autoregulatory function can be achieved from time series as short as 1min, although gain and coherence tend to be overestimated at higher frequencies. There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism ("physiocal") causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We assessed the effects of "physiocals" and TCD signal loss on transfer function estimates in recordings of 45 healthy subjects. We added artificial "physiocals" and removed sections of TCD signal from 5 min Finapres and TCD recordings. We also compared transfer function results from 5 min time series with time series as short as 1 min. Accurate transfer function estimates can be achieved in the 0.03-0.07 Hz band using beat-by-beat data with linear interpolation, while data loss is less than 10s. At frequencies between 0.07 and 0.5 Hz, transfer function estimates become unreliable with 5s of data loss every 50s. 2s data loss only affects frequency bands above 0.15Hz. Finally, accurate transfer function assessment of autoregulatory function can be achieved from time series as short as 1min, although gain and coherence tend to be overestimated at higher frequencies. Abstract There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism (“physiocal”) causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We assessed the effects of “physiocals” and TCD signal loss on transfer function estimates in recordings of 45 healthy subjects. We added artificial “physiocals” and removed sections of TCD signal from 5 min Finapres and TCD recordings. We also compared transfer function results from 5 min time series with time series as short as 1 min. Accurate transfer function estimates can be achieved in the 0.03–0.07 Hz band using beat-by-beat data with linear interpolation, while data loss is less than 10 s. At frequencies between 0.07 and 0.5 Hz, transfer function estimates become unreliable with 5 s of data loss every 50 s. 2 s data loss only affects frequency bands above 0.15 Hz. Finally, accurate transfer function assessment of autoregulatory function can be achieved from time series as short as 1 min, although gain and coherence tend to be overestimated at higher frequencies. |
Author | ÓLaighin, Gearóid Nakagawa, Kazuma Serrador, Jorge M. Sorond, Farzaneh A. Jones, Edward Deegan, Brian M. |
AuthorAffiliation | a Electrical & Electronic Engineering, NUI Galway, University Road, Galway, Ireland b Bioelectronics Research Cluster, National Centre for Biomedical Engineering Science, NUI Galway, University Road, Galway, Ireland e Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States f Department of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, United States g War Related Illness & Injury Study Center, Veterans Biomedical Research Institute, NJ VA Health Care System, East Orange, NJ, United States c Department of Neurology, Stroke Division, Brigham and Women’s Hospital, Boston, MA, United States d Harvard Medical School, Boston, MA, United States |
AuthorAffiliation_xml | – name: a Electrical & Electronic Engineering, NUI Galway, University Road, Galway, Ireland – name: e Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States – name: c Department of Neurology, Stroke Division, Brigham and Women’s Hospital, Boston, MA, United States – name: d Harvard Medical School, Boston, MA, United States – name: f Department of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, United States – name: g War Related Illness & Injury Study Center, Veterans Biomedical Research Institute, NJ VA Health Care System, East Orange, NJ, United States – name: b Bioelectronics Research Cluster, National Centre for Biomedical Engineering Science, NUI Galway, University Road, Galway, Ireland |
Author_xml | – sequence: 1 givenname: Brian M. surname: Deegan fullname: Deegan, Brian M. email: b.deegan1@nuigalway.ie organization: Electrical & Electronic Engineering, NUI Galway, University Road, Galway, Ireland – sequence: 2 givenname: Jorge M. surname: Serrador fullname: Serrador, Jorge M. organization: Electrical & Electronic Engineering, NUI Galway, University Road, Galway, Ireland – sequence: 3 givenname: Kazuma surname: Nakagawa fullname: Nakagawa, Kazuma organization: Department of Neurology, Stroke Division, Brigham and Women's Hospital, Boston, MA, United States – sequence: 4 givenname: Edward surname: Jones fullname: Jones, Edward organization: Electrical & Electronic Engineering, NUI Galway, University Road, Galway, Ireland – sequence: 5 givenname: Farzaneh A. surname: Sorond fullname: Sorond, Farzaneh A. organization: Department of Neurology, Stroke Division, Brigham and Women's Hospital, Boston, MA, United States – sequence: 6 givenname: Gearóid surname: ÓLaighin fullname: ÓLaighin, Gearóid email: gearoid.olaighin@nuigalway.ie organization: Electrical & Electronic Engineering, NUI Galway, University Road, Galway, Ireland |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24208212$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21239208$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUstu1DAUjVARbQd-AbxBrGbwK3FmQauqPKVKLChry3FuZjy4drCTSvMHfDY3nWmBSqjdxLF9zvG9557j4iDEAEXxitEFo6x6u1lcQQth1a-3C06nU76gVD0pjlitxFxSQQ_wX5R0LkshDovjnDeUUikr8aw45IyLJaf1UfHrcg0Eug7sQGJHGh9jS_oEOY8JiDXeNckMLoZMTGjJkEzIFj_OePI-9r2HRLJbBdz6mDOJYYfp8Lwbg52oBPLgrswAeXrCQgLU9MSMQ0ywGv2N_vPiaWd8hhf7dVZ8__jh8vzz_OLrpy_nZxdzq5gY5hWrBGsrY0xTClt20qja0BJkxZUoVdPyRgGrWCnburP1Emo0oRbc0I5DqZZiVpzsdPuxQQ8tBKzX6z5hhWmro3H635vg1noVr7UUS8klR4E3e4EUf47Ymr5y2YL3JkAcs65VNZlbqYeRiOGSqknz5d9F3VVzOycEvN4DTMahdGixdfkPTiJoAs-KdzucTTiNBJ22brjxF3txXjOqp_zojb7Lj57yoxnXmB_kq3v82yceZp7tmIDDu3aQdLYOgoXWJQyXbqN7hMbJPQ3rXXDY8A_YQt7EMWHQsmY6I0F_m_I9xZthsvlSTjad_l_gUSX8BnUmErM |
CitedBy_id | crossref_primary_10_1088_1361_6579_abad49 crossref_primary_10_1038_s41393_017_0021_7 crossref_primary_10_1088_1361_6579_ab39d3 crossref_primary_10_1088_1361_6579_ac27b8 crossref_primary_10_1093_pnasnexus_pgae252 crossref_primary_10_1155_2018_7803426 crossref_primary_10_1177_0271678X211029049 crossref_primary_10_1007_s12028_021_01301_5 crossref_primary_10_3389_fphys_2014_00473 crossref_primary_10_1016_j_compbiomed_2019_103508 crossref_primary_10_1177_0271678X221119760 crossref_primary_10_1186_s12883_018_1025_4 crossref_primary_10_1088_1361_6579_aa76a9 crossref_primary_10_1007_s11517_019_02064_0 crossref_primary_10_1016_j_autneu_2020_102742 crossref_primary_10_1016_j_medengphy_2016_02_001 crossref_primary_10_1016_j_wneu_2023_10_046 crossref_primary_10_1371_journal_pone_0205393 crossref_primary_10_1016_j_medengphy_2014_02_001 crossref_primary_10_1152_japplphysiol_00231_2011 crossref_primary_10_1016_j_medengphy_2017_06_007 crossref_primary_10_1016_j_niox_2020_10_004 crossref_primary_10_1177_0271678X15626425 crossref_primary_10_1007_s00421_018_4036_3 |
Cites_doi | 10.1161/hs1001.097225 10.1161/01.STR.28.9.1686 10.1136/hrt.82.3.365 10.1161/01.CIR.0000144472.08647.40 10.1161/01.STR.0000080936.36601.34 10.1161/01.STR.31.8.1897 10.1152/jappl.1998.85.3.1113 10.1161/STROKEAHA.108.545285 10.1088/0967-3334/24/1/303 10.1016/S0165-1838(99)00013-2 10.1088/0967-3334/19/3/001 10.1042/CS20050009 10.1097/00004647-199904000-00012 10.1161/01.STR.26.5.834 10.1227/00006123-199009000-00004 10.1161/01.HYP.26.2.315 10.1097/00004872-199209000-00010 10.1111/j.1475-097X.1993.tb00469.x 10.1161/01.STR.26.6.1014 10.1007/s10558-007-9044-6 10.1097/00004647-199803000-00010 10.1161/01.STR.26.10.1801 10.1152/jappl.2001.91.6.2493 10.1161/01.STR.20.1.45 10.1016/S0008-6363(98)00067-4 10.1093/bja/65.4.558 10.3171/jns.1982.57.6.0769 10.1152/japplphysiol.00471.2004 10.1109/10.508541 10.1093/cvr/19.3.139 10.1111/j.1749-6632.2001.tb03702.x 10.1097/MBP.0b013e3282c9ad2f 10.1152/ajpheart.00485.2004 |
ContentType | Journal Article |
Copyright | 2010 IPEM IPEM 2015 INIST-CNRS Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved. 2010 IPEM. Published by Elsevier Ltd. All rights reserved. 2010 |
Copyright_xml | – notice: 2010 IPEM – notice: IPEM – notice: 2015 INIST-CNRS – notice: Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved. – notice: 2010 IPEM. Published by Elsevier Ltd. All rights reserved. 2010 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 5PM |
DOI | 10.1016/j.medengphy.2010.12.007 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Chemistry |
EISSN | 1873-4030 |
EndPage | 562 |
ExternalDocumentID | PMC4394242 21239208 24208212 10_1016_j_medengphy_2010_12_007 S1350453310002948 1_s2_0_S1350453310002948 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: K23 AG030967 |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- AACTN AAXKI ABTAH AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 5PM |
ID | FETCH-LOGICAL-c713t-61631d6aaab53c5f4a78a05e4627357bd2b7e16154d8fc89e8135832a0f2e5793 |
IEDL.DBID | AIKHN |
ISSN | 1350-4533 1873-4030 |
IngestDate | Thu Aug 21 18:29:37 EDT 2025 Thu Sep 04 22:58:08 EDT 2025 Fri Sep 05 11:29:31 EDT 2025 Mon Jul 21 05:46:04 EDT 2025 Mon Jul 21 09:13:14 EDT 2025 Thu Apr 24 22:52:18 EDT 2025 Tue Jul 01 04:24:44 EDT 2025 Fri Feb 23 02:29:19 EST 2024 Sun Feb 23 10:19:59 EST 2025 Tue Aug 26 16:32:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Physiocal Cerebral autoregulation Blood pressure Transfer function Cerebral blood flow Data loss Sonography Doppler ultrasound study Central nervous system Calibration Blood flow Encephalon Transcranial route Self regulation Arterial pressure Hemodynamics Biomedical engineering |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c713t-61631d6aaab53c5f4a78a05e4627357bd2b7e16154d8fc89e8135832a0f2e5793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1350453310002948 |
PMID | 21239208 |
PQID | 867324072 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4394242 proquest_miscellaneous_876239267 proquest_miscellaneous_867324072 pubmed_primary_21239208 pascalfrancis_primary_24208212 crossref_citationtrail_10_1016_j_medengphy_2010_12_007 crossref_primary_10_1016_j_medengphy_2010_12_007 elsevier_sciencedirect_doi_10_1016_j_medengphy_2010_12_007 elsevier_clinicalkeyesjournals_1_s2_0_S1350453310002948 elsevier_clinicalkey_doi_10_1016_j_medengphy_2010_12_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-06-01 |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Medical engineering & physics |
PublicationTitleAlternate | Med Eng Phys |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Kuo, Chern, Sheng, Wong, Hu (bib0190) 1998; 18 Paulson, Strandgaard, Edvinsson (bib0005) 1990; 2 Hughson, Edwards, O’Leary, Shoemaker (bib0065) 2001; 32 Tiecks, Lam, Aaslid, Newell (bib0010) 1995; 26 Panerai, Sammons, Smith, Rathbone, Bentley, Potter (bib0170) 2007; 12 Bos, van den Meiracker, Wesseling, Schalekamp (bib0120) 1995; 26 Diehl, Linden, Chalkiadaki, Diehl (bib0045) 1999; 76 Penaz (bib0100) 1973 Zhang, Zuckerman, Giller, Levine (bib0145) 1998; 274 Kurki, Piirainen, Kurki (bib0160) 1990; 65 Hu, Kuo, Wong, Luk, Chern, Hsu (bib0085) 1999; 19 Cencetti, Lagi, Cipriani, Fattorini, Bandinelli, Bernardi (bib0040) 1999; 82 Schondorf, Benoit, Stein (bib0050) 2001; 940 Reinhard, Muller, Guschlbauer, Timmer, Hetzel (bib0165) 2003; 24 Schondorf, Stein, Roberts, Benoit, Cupples (bib0140) 2001; 91 Giller (bib0095) 1990; 27 Aaslid, Lindegaard, Sorteberg, Nornes (bib0025) 1989; 20 Panerai, Kelsall, Rennie, Evans (bib0070) 1996; 43 Birch, Dirnhuber, Hartley-Davies, Iannotti, Neil-Dwyer (bib0080) 1995; 26 Imholz, Parati, Mancia, Wesseling (bib0115) 1992; 10 Blaber, Bondar, Stein, Dunphy, Moradshahi, Kassam (bib0135) 1997; 28 Haubrich, Kruska, Diehl, Moller-Hartmann, Klotzsch (bib0185) 2003; 34 Eames, Potter, Panerai (bib0180) 2005; 109 Zhang, Zuckerman, Levine (bib0035) 1998; 85 Tanaka, Thulesius (bib0155) 1993; 13 Aaslid, Markwalder, Nornes (bib0020) 1982; 57 Wesseling (bib0195) 1995; 36 Lipsitz, Mukai, Hamner, Gagnon, Babikian (bib0150) 2000; 31 Blaber, Bondar, Stein, Dunphy, Moradshahi, Kassam (bib0030) 1997; 28 Diehl, Linden, Lucke, Berlit (bib0075) 1995; 26 Nakagawa, Serrador, Larose, Moslehi, Lipsitz, Sorond (bib0125) 2009; 40 Panerai (bib0015) 1998; 19 Serrador, Sorond, Vyas, Gagnon, Iloputaife, Lipsitz (bib0060) 2005; 98 Panerai (bib0090) 2008; 8 Immink, van den Born, van Montfrans, Koopmans, Karemaker, van Lieshout (bib0130) 2004; 110 Schondorf, Stein, Roberts, Benoit, Cupples (bib0175) 2001; 91 Krishnamurthy, Wang, Bhakta, Bruce, Evans, Justice (bib0055) 2004; 287 Imholz, Wieling, van Montfrans, Wesseling (bib0105) 1998; 38 Wesseling, Settels, van der Hoeven, Nijboer, Butijn, Dorlas (bib0110) 1985; 19 Schondorf (10.1016/j.medengphy.2010.12.007_bib0175) 2001; 91 Serrador (10.1016/j.medengphy.2010.12.007_bib0060) 2005; 98 Hu (10.1016/j.medengphy.2010.12.007_bib0085) 1999; 19 Blaber (10.1016/j.medengphy.2010.12.007_bib0135) 1997; 28 Bos (10.1016/j.medengphy.2010.12.007_bib0120) 1995; 26 Tiecks (10.1016/j.medengphy.2010.12.007_bib0010) 1995; 26 Panerai (10.1016/j.medengphy.2010.12.007_bib0170) 2007; 12 Imholz (10.1016/j.medengphy.2010.12.007_bib0105) 1998; 38 Schondorf (10.1016/j.medengphy.2010.12.007_bib0140) 2001; 91 Panerai (10.1016/j.medengphy.2010.12.007_bib0015) 1998; 19 Tanaka (10.1016/j.medengphy.2010.12.007_bib0155) 1993; 13 Wesseling (10.1016/j.medengphy.2010.12.007_bib0110) 1985; 19 Diehl (10.1016/j.medengphy.2010.12.007_bib0075) 1995; 26 Kurki (10.1016/j.medengphy.2010.12.007_bib0160) 1990; 65 Cencetti (10.1016/j.medengphy.2010.12.007_bib0040) 1999; 82 Aaslid (10.1016/j.medengphy.2010.12.007_bib0020) 1982; 57 Eames (10.1016/j.medengphy.2010.12.007_bib0180) 2005; 109 Haubrich (10.1016/j.medengphy.2010.12.007_bib0185) 2003; 34 Zhang (10.1016/j.medengphy.2010.12.007_bib0145) 1998; 274 Aaslid (10.1016/j.medengphy.2010.12.007_bib0025) 1989; 20 Giller (10.1016/j.medengphy.2010.12.007_bib0095) 1990; 27 Penaz (10.1016/j.medengphy.2010.12.007_bib0100) 1973 Panerai (10.1016/j.medengphy.2010.12.007_bib0070) 1996; 43 Immink (10.1016/j.medengphy.2010.12.007_bib0130) 2004; 110 Schondorf (10.1016/j.medengphy.2010.12.007_bib0050) 2001; 940 Reinhard (10.1016/j.medengphy.2010.12.007_bib0165) 2003; 24 Kuo (10.1016/j.medengphy.2010.12.007_bib0190) 1998; 18 Imholz (10.1016/j.medengphy.2010.12.007_bib0115) 1992; 10 Diehl (10.1016/j.medengphy.2010.12.007_bib0045) 1999; 76 Paulson (10.1016/j.medengphy.2010.12.007_bib0005) 1990; 2 Zhang (10.1016/j.medengphy.2010.12.007_bib0035) 1998; 85 Wesseling (10.1016/j.medengphy.2010.12.007_bib0195) 1995; 36 Hughson (10.1016/j.medengphy.2010.12.007_bib0065) 2001; 32 Nakagawa (10.1016/j.medengphy.2010.12.007_bib0125) 2009; 40 Krishnamurthy (10.1016/j.medengphy.2010.12.007_bib0055) 2004; 287 Blaber (10.1016/j.medengphy.2010.12.007_bib0030) 1997; 28 Panerai (10.1016/j.medengphy.2010.12.007_bib0090) 2008; 8 Lipsitz (10.1016/j.medengphy.2010.12.007_bib0150) 2000; 31 Birch (10.1016/j.medengphy.2010.12.007_bib0080) 1995; 26 9735883 - Physiol Meas. 1998 Aug;19(3):305-38 1328379 - J Hypertens. 1992 Sep;10(9):979-84 11717210 - J Appl Physiol (1985). 2001 Dec;91(6):2493-502 7762016 - Stroke. 1995 Jun;26(6):1014-9 7740576 - Stroke. 1995 May;26(5):834-7 11458706 - Ann N Y Acad Sci. 2001 Jun;940:514-26 7570728 - Stroke. 1995 Oct;26(10 ):1801-4 10412840 - J Auton Nerv Syst. 1999 May 28;76(2-3):159-66 15361517 - J Appl Physiol (1985). 2005 Jan;98(1):151-9 10926954 - Stroke. 2000 Aug;31(8):1897-903 9498848 - J Cereb Blood Flow Metab. 1998 Mar;18(3):311-8 10455091 - Heart. 1999 Sep;82(3):365-72 15773816 - Clin Sci (Lond). 2005 Jul;109 (1):109-15 9729590 - J Appl Physiol (1985). 1998 Sep;85(3):1113-22 9216150 - IEEE Trans Biomed Eng. 1996 Aug;43(8):779-88 19359628 - Stroke. 2009 Jun;40(6):2062-7 2234328 - Neurosurgery. 1990 Sep;27(3):362-8 7143059 - J Neurosurg. 1982 Dec;57(6):769-74 18004105 - Blood Press Monit. 2007 Dec;12(6):369-76 9747429 - Cardiovasc Res. 1998 Jun;38(3):605-16 15466625 - Circulation. 2004 Oct 12;110(15):2241-5 7635541 - Hypertension. 1995 Aug;26(2):315-20 8222538 - Clin Physiol. 1993 Sep;13(5):535-45 2248827 - Br J Anaesth. 1990 Oct;65(4):558-63 3986857 - Cardiovasc Res. 1985 Mar;19(3):139-45 2201348 - Cerebrovasc Brain Metab Rev. 1990 Summer;2(2):161-92 12843352 - Stroke. 2003 Aug;34(8):1881-5 9458872 - Am J Physiol. 1998 Jan;274(1 Pt 2):H233-41 18041584 - Cardiovasc Eng. 2008 Mar;8(1):42-59 2492126 - Stroke. 1989 Jan;20(1):45-52 15297255 - Am J Physiol Heart Circ Physiol. 2004 Dec;287(6):H2510-7 12636185 - Physiol Meas. 2003 Feb;24(1):27-43 9303010 - Stroke. 1997 Sep;28(9):1686-92 11588333 - Stroke. 2001 Oct;32(10 ):2403-8 10197516 - J Cereb Blood Flow Metab. 1999 Apr;19(4):460-5 |
References_xml | – volume: 91 start-page: 2493 year: 2001 end-page: 2502 ident: bib0140 article-title: Dynamic cerebral autoregulation is preserved in neurally mediated syncope publication-title: J Appl Physiol – volume: 940 start-page: 514 year: 2001 end-page: 526 ident: bib0050 article-title: Cerebral autoregulation in orthostatic intolerance publication-title: Ann N Y Acad Sci – volume: 12 start-page: 369 year: 2007 end-page: 376 ident: bib0170 article-title: Transient drifts between Finapres and continuous intra-aortic measurements of blood pressure publication-title: Blood Press Monit – volume: 2 start-page: 161 year: 1990 end-page: 192 ident: bib0005 article-title: Cerebral autoregulation publication-title: Cerebrovasc Brain Metab Rev – volume: 76 start-page: 159 year: 1999 end-page: 166 ident: bib0045 article-title: Cerebrovascular mechanisms in neurocardiogenic syncope with and without postural tachycardia syndrome publication-title: J Auton Nerv Syst – volume: 19 start-page: 460 year: 1999 end-page: 465 ident: bib0085 article-title: Transfer function analysis of cerebral hemodynamics in patients with carotid stenosis publication-title: J Cereb Blood Flow Metab – volume: 57 start-page: 769 year: 1982 end-page: 774 ident: bib0020 article-title: Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries publication-title: J Neurosurg – volume: 20 start-page: 45 year: 1989 end-page: 52 ident: bib0025 article-title: Cerebral autoregulation dynamics in humans publication-title: Stroke – volume: 98 start-page: 151 year: 2005 end-page: 159 ident: bib0060 article-title: Cerebral pressure-flow relations in hypertensive elderly humans: transfer gain in different frequency domains publication-title: J Appl Physiol – volume: 43 start-page: 779 year: 1996 end-page: 788 ident: bib0070 article-title: Analysis of cerebral blood flow autoregulation in neonates publication-title: IEEE Trans Biomed Eng – volume: 26 start-page: 315 year: 1995 end-page: 320 ident: bib0120 article-title: Effect of regional and systemic changes in vasomotor tone on finger pressure amplification publication-title: Hypertension – volume: 31 start-page: 1897 year: 2000 end-page: 1903 ident: bib0150 article-title: Dynamic regulation of middle cerebral artery blood flow velocity in aging and hypertension publication-title: Stroke – volume: 91 start-page: 2493 year: 2001 ident: bib0175 article-title: Dynamic cerebral autoregulation is preserved in neurally mediated syncope publication-title: J Appl Physiol – volume: 28 start-page: 1686 year: 1997 end-page: 1692 ident: bib0135 article-title: Transfer function analysis of cerebral autoregulation dynamics in autonomic failure patients publication-title: Stroke – volume: 26 start-page: 1801 year: 1995 end-page: 1804 ident: bib0075 article-title: Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation publication-title: Stroke – year: 1973 ident: bib0100 article-title: Photoelectric measurement of blood pressure, volume and flow in the finger publication-title: Book photoelectric measurement of blood pressure, volume and flow in the finger, vol. 104, Series photoelectric measurement of blood pressure, volume and flow in the finger – volume: 24 start-page: 27 year: 2003 end-page: 43 ident: bib0165 article-title: Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation—a comparison between spontaneous and respiratory-induced oscillations publication-title: Physiol Meas – volume: 65 start-page: 558 year: 1990 end-page: 563 ident: bib0160 article-title: Non-invasive monitoring of finger arterial pressure in patients with Raynaud's phenomenon: effects of exposure to cold publication-title: Br J Anaesth – volume: 19 start-page: 139 year: 1985 end-page: 145 ident: bib0110 article-title: Effects of peripheral vasoconstriction on the measurement of blood pressure in a finger publication-title: Cardiovasc Res – volume: 19 start-page: 305 year: 1998 end-page: 338 ident: bib0015 article-title: Assessment of cerebral pressure autoregulation in humans—a review of measurement methods publication-title: Physiol Meas – volume: 10 start-page: 979 year: 1992 end-page: 984 ident: bib0115 article-title: Effects of graded vasoconstriction upon the measurement of finger arterial pressure publication-title: J Hypertens – volume: 28 start-page: 1686 year: 1997 ident: bib0030 article-title: Transfer function analysis of cerebral autoregulation dynamics in autonomic failure patients publication-title: Stroke – volume: 85 start-page: 1113 year: 1998 end-page: 1122 ident: bib0035 article-title: Deterioration of cerebral autoregulation during orthostatic stress: insights from the frequency domain publication-title: J Appl Physiol – volume: 82 start-page: 365 year: 1999 ident: bib0040 article-title: Autonomic control of the cerebral circulation during normal and impaired peripheral circulatory control publication-title: Heart – volume: 13 start-page: 535 year: 1993 end-page: 545 ident: bib0155 article-title: Effect of temperature on finger artery pressure evaluated by volume clamp technique publication-title: Clin Physiol – volume: 36 start-page: 50 year: 1995 end-page: 66 ident: bib0195 article-title: A century of noninvasive arterial pressure measurement: from Marey to Peñáz and Finapres publication-title: Homeostasis – volume: 26 start-page: 834 year: 1995 end-page: 837 ident: bib0080 article-title: Assessment of autoregulation by means of periodic changes in blood pressure publication-title: Stroke – volume: 38 start-page: 605 year: 1998 end-page: 616 ident: bib0105 article-title: Fifteen years experience with finger arterial pressure monitoring: assessment of the technology publication-title: Cardiovasc Res – volume: 32 start-page: 2403 year: 2001 end-page: 2408 ident: bib0065 article-title: Critical analysis of cerebrovascular autoregulation during repeated head-up tilt publication-title: Stroke – volume: 8 start-page: 42 year: 2008 end-page: 59 ident: bib0090 article-title: Cerebral autoregulation: from models to clinical applications publication-title: Cardiovasc Eng – volume: 40 start-page: 2062 year: 2009 end-page: 2067 ident: bib0125 article-title: Autoregulation in the posterior circulation is altered by the metabolic state of the visual cortex publication-title: Stroke – volume: 274 start-page: H233 year: 1998 end-page: H241 ident: bib0145 article-title: Transfer function analysis of dynamic cerebral autoregulation in humans publication-title: Am J Physiol – volume: 287 start-page: H2510 year: 2004 ident: bib0055 article-title: Dynamic cardiorespiratory interaction during head-up tilt-mediated presyncope publication-title: Am J Phys Heart Circ Physiol – volume: 18 start-page: 311 year: 1998 end-page: 318 ident: bib0190 article-title: Frequency domain analysis of cerebral blood flow velocity and its correlation with arterial blood pressure publication-title: J Cereb Blood Flow Metab – volume: 110 start-page: 2241 year: 2004 end-page: 2245 ident: bib0130 article-title: Impaired cerebral autoregulation in patients with malignant hypertension publication-title: Circulation – volume: 34 start-page: 1881 year: 2003 end-page: 1885 ident: bib0185 article-title: Dynamic autoregulation testing in patients with middle cerebral artery stenosis publication-title: Stroke – volume: 26 start-page: 1014 year: 1995 end-page: 1019 ident: bib0010 article-title: Comparison of static and dynamic cerebral autoregulation measurements publication-title: Stroke – volume: 27 start-page: 362 year: 1990 end-page: 368 ident: bib0095 article-title: The frequency-dependent behavior of cerebral autoregulation publication-title: Neurosurgery – volume: 109 start-page: 109 year: 2005 end-page: 115 ident: bib0180 article-title: Assessment of cerebral autoregulation from ectopic heartbeats publication-title: Clin Sci (Lond) – volume: 32 start-page: 2403 year: 2001 ident: 10.1016/j.medengphy.2010.12.007_bib0065 article-title: Critical analysis of cerebrovascular autoregulation during repeated head-up tilt publication-title: Stroke doi: 10.1161/hs1001.097225 – volume: 28 start-page: 1686 year: 1997 ident: 10.1016/j.medengphy.2010.12.007_bib0030 article-title: Transfer function analysis of cerebral autoregulation dynamics in autonomic failure patients publication-title: Stroke doi: 10.1161/01.STR.28.9.1686 – volume: 82 start-page: 365 year: 1999 ident: 10.1016/j.medengphy.2010.12.007_bib0040 article-title: Autonomic control of the cerebral circulation during normal and impaired peripheral circulatory control publication-title: Heart doi: 10.1136/hrt.82.3.365 – volume: 110 start-page: 2241 year: 2004 ident: 10.1016/j.medengphy.2010.12.007_bib0130 article-title: Impaired cerebral autoregulation in patients with malignant hypertension publication-title: Circulation doi: 10.1161/01.CIR.0000144472.08647.40 – volume: 28 start-page: 1686 year: 1997 ident: 10.1016/j.medengphy.2010.12.007_bib0135 article-title: Transfer function analysis of cerebral autoregulation dynamics in autonomic failure patients publication-title: Stroke doi: 10.1161/01.STR.28.9.1686 – volume: 274 start-page: H233 year: 1998 ident: 10.1016/j.medengphy.2010.12.007_bib0145 article-title: Transfer function analysis of dynamic cerebral autoregulation in humans publication-title: Am J Physiol – volume: 34 start-page: 1881 year: 2003 ident: 10.1016/j.medengphy.2010.12.007_bib0185 article-title: Dynamic autoregulation testing in patients with middle cerebral artery stenosis publication-title: Stroke doi: 10.1161/01.STR.0000080936.36601.34 – volume: 31 start-page: 1897 year: 2000 ident: 10.1016/j.medengphy.2010.12.007_bib0150 article-title: Dynamic regulation of middle cerebral artery blood flow velocity in aging and hypertension publication-title: Stroke doi: 10.1161/01.STR.31.8.1897 – volume: 85 start-page: 1113 year: 1998 ident: 10.1016/j.medengphy.2010.12.007_bib0035 article-title: Deterioration of cerebral autoregulation during orthostatic stress: insights from the frequency domain publication-title: J Appl Physiol doi: 10.1152/jappl.1998.85.3.1113 – year: 1973 ident: 10.1016/j.medengphy.2010.12.007_bib0100 article-title: Photoelectric measurement of blood pressure, volume and flow in the finger – volume: 40 start-page: 2062 year: 2009 ident: 10.1016/j.medengphy.2010.12.007_bib0125 article-title: Autoregulation in the posterior circulation is altered by the metabolic state of the visual cortex publication-title: Stroke doi: 10.1161/STROKEAHA.108.545285 – volume: 36 start-page: 50 year: 1995 ident: 10.1016/j.medengphy.2010.12.007_bib0195 article-title: A century of noninvasive arterial pressure measurement: from Marey to Peñáz and Finapres publication-title: Homeostasis – volume: 24 start-page: 27 year: 2003 ident: 10.1016/j.medengphy.2010.12.007_bib0165 article-title: Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation—a comparison between spontaneous and respiratory-induced oscillations publication-title: Physiol Meas doi: 10.1088/0967-3334/24/1/303 – volume: 76 start-page: 159 year: 1999 ident: 10.1016/j.medengphy.2010.12.007_bib0045 article-title: Cerebrovascular mechanisms in neurocardiogenic syncope with and without postural tachycardia syndrome publication-title: J Auton Nerv Syst doi: 10.1016/S0165-1838(99)00013-2 – volume: 19 start-page: 305 year: 1998 ident: 10.1016/j.medengphy.2010.12.007_bib0015 article-title: Assessment of cerebral pressure autoregulation in humans—a review of measurement methods publication-title: Physiol Meas doi: 10.1088/0967-3334/19/3/001 – volume: 109 start-page: 109 year: 2005 ident: 10.1016/j.medengphy.2010.12.007_bib0180 article-title: Assessment of cerebral autoregulation from ectopic heartbeats publication-title: Clin Sci (Lond) doi: 10.1042/CS20050009 – volume: 19 start-page: 460 year: 1999 ident: 10.1016/j.medengphy.2010.12.007_bib0085 article-title: Transfer function analysis of cerebral hemodynamics in patients with carotid stenosis publication-title: J Cereb Blood Flow Metab doi: 10.1097/00004647-199904000-00012 – volume: 26 start-page: 834 year: 1995 ident: 10.1016/j.medengphy.2010.12.007_bib0080 article-title: Assessment of autoregulation by means of periodic changes in blood pressure publication-title: Stroke doi: 10.1161/01.STR.26.5.834 – volume: 27 start-page: 362 year: 1990 ident: 10.1016/j.medengphy.2010.12.007_bib0095 article-title: The frequency-dependent behavior of cerebral autoregulation publication-title: Neurosurgery doi: 10.1227/00006123-199009000-00004 – volume: 26 start-page: 315 year: 1995 ident: 10.1016/j.medengphy.2010.12.007_bib0120 article-title: Effect of regional and systemic changes in vasomotor tone on finger pressure amplification publication-title: Hypertension doi: 10.1161/01.HYP.26.2.315 – volume: 10 start-page: 979 year: 1992 ident: 10.1016/j.medengphy.2010.12.007_bib0115 article-title: Effects of graded vasoconstriction upon the measurement of finger arterial pressure publication-title: J Hypertens doi: 10.1097/00004872-199209000-00010 – volume: 13 start-page: 535 year: 1993 ident: 10.1016/j.medengphy.2010.12.007_bib0155 article-title: Effect of temperature on finger artery pressure evaluated by volume clamp technique publication-title: Clin Physiol doi: 10.1111/j.1475-097X.1993.tb00469.x – volume: 26 start-page: 1014 year: 1995 ident: 10.1016/j.medengphy.2010.12.007_bib0010 article-title: Comparison of static and dynamic cerebral autoregulation measurements publication-title: Stroke doi: 10.1161/01.STR.26.6.1014 – volume: 8 start-page: 42 year: 2008 ident: 10.1016/j.medengphy.2010.12.007_bib0090 article-title: Cerebral autoregulation: from models to clinical applications publication-title: Cardiovasc Eng doi: 10.1007/s10558-007-9044-6 – volume: 18 start-page: 311 year: 1998 ident: 10.1016/j.medengphy.2010.12.007_bib0190 article-title: Frequency domain analysis of cerebral blood flow velocity and its correlation with arterial blood pressure publication-title: J Cereb Blood Flow Metab doi: 10.1097/00004647-199803000-00010 – volume: 26 start-page: 1801 year: 1995 ident: 10.1016/j.medengphy.2010.12.007_bib0075 article-title: Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation publication-title: Stroke doi: 10.1161/01.STR.26.10.1801 – volume: 91 start-page: 2493 year: 2001 ident: 10.1016/j.medengphy.2010.12.007_bib0175 article-title: Dynamic cerebral autoregulation is preserved in neurally mediated syncope publication-title: J Appl Physiol doi: 10.1152/jappl.2001.91.6.2493 – volume: 20 start-page: 45 year: 1989 ident: 10.1016/j.medengphy.2010.12.007_bib0025 article-title: Cerebral autoregulation dynamics in humans publication-title: Stroke doi: 10.1161/01.STR.20.1.45 – volume: 38 start-page: 605 year: 1998 ident: 10.1016/j.medengphy.2010.12.007_bib0105 article-title: Fifteen years experience with finger arterial pressure monitoring: assessment of the technology publication-title: Cardiovasc Res doi: 10.1016/S0008-6363(98)00067-4 – volume: 65 start-page: 558 year: 1990 ident: 10.1016/j.medengphy.2010.12.007_bib0160 article-title: Non-invasive monitoring of finger arterial pressure in patients with Raynaud's phenomenon: effects of exposure to cold publication-title: Br J Anaesth doi: 10.1093/bja/65.4.558 – volume: 57 start-page: 769 year: 1982 ident: 10.1016/j.medengphy.2010.12.007_bib0020 article-title: Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries publication-title: J Neurosurg doi: 10.3171/jns.1982.57.6.0769 – volume: 98 start-page: 151 year: 2005 ident: 10.1016/j.medengphy.2010.12.007_bib0060 article-title: Cerebral pressure-flow relations in hypertensive elderly humans: transfer gain in different frequency domains publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00471.2004 – volume: 43 start-page: 779 year: 1996 ident: 10.1016/j.medengphy.2010.12.007_bib0070 article-title: Analysis of cerebral blood flow autoregulation in neonates publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.508541 – volume: 91 start-page: 2493 year: 2001 ident: 10.1016/j.medengphy.2010.12.007_bib0140 article-title: Dynamic cerebral autoregulation is preserved in neurally mediated syncope publication-title: J Appl Physiol doi: 10.1152/jappl.2001.91.6.2493 – volume: 19 start-page: 139 year: 1985 ident: 10.1016/j.medengphy.2010.12.007_bib0110 article-title: Effects of peripheral vasoconstriction on the measurement of blood pressure in a finger publication-title: Cardiovasc Res doi: 10.1093/cvr/19.3.139 – volume: 2 start-page: 161 year: 1990 ident: 10.1016/j.medengphy.2010.12.007_bib0005 article-title: Cerebral autoregulation publication-title: Cerebrovasc Brain Metab Rev – volume: 940 start-page: 514 year: 2001 ident: 10.1016/j.medengphy.2010.12.007_bib0050 article-title: Cerebral autoregulation in orthostatic intolerance publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.2001.tb03702.x – volume: 12 start-page: 369 year: 2007 ident: 10.1016/j.medengphy.2010.12.007_bib0170 article-title: Transient drifts between Finapres and continuous intra-aortic measurements of blood pressure publication-title: Blood Press Monit doi: 10.1097/MBP.0b013e3282c9ad2f – volume: 287 start-page: H2510 year: 2004 ident: 10.1016/j.medengphy.2010.12.007_bib0055 article-title: Dynamic cardiorespiratory interaction during head-up tilt-mediated presyncope publication-title: Am J Phys Heart Circ Physiol doi: 10.1152/ajpheart.00485.2004 – reference: 15773816 - Clin Sci (Lond). 2005 Jul;109 (1):109-15 – reference: 10926954 - Stroke. 2000 Aug;31(8):1897-903 – reference: 12636185 - Physiol Meas. 2003 Feb;24(1):27-43 – reference: 9729590 - J Appl Physiol (1985). 1998 Sep;85(3):1113-22 – reference: 7740576 - Stroke. 1995 May;26(5):834-7 – reference: 10412840 - J Auton Nerv Syst. 1999 May 28;76(2-3):159-66 – reference: 8222538 - Clin Physiol. 1993 Sep;13(5):535-45 – reference: 2492126 - Stroke. 1989 Jan;20(1):45-52 – reference: 18004105 - Blood Press Monit. 2007 Dec;12(6):369-76 – reference: 15466625 - Circulation. 2004 Oct 12;110(15):2241-5 – reference: 2248827 - Br J Anaesth. 1990 Oct;65(4):558-63 – reference: 10455091 - Heart. 1999 Sep;82(3):365-72 – reference: 7570728 - Stroke. 1995 Oct;26(10 ):1801-4 – reference: 15361517 - J Appl Physiol (1985). 2005 Jan;98(1):151-9 – reference: 11458706 - Ann N Y Acad Sci. 2001 Jun;940:514-26 – reference: 19359628 - Stroke. 2009 Jun;40(6):2062-7 – reference: 9735883 - Physiol Meas. 1998 Aug;19(3):305-38 – reference: 1328379 - J Hypertens. 1992 Sep;10(9):979-84 – reference: 10197516 - J Cereb Blood Flow Metab. 1999 Apr;19(4):460-5 – reference: 11717210 - J Appl Physiol (1985). 2001 Dec;91(6):2493-502 – reference: 7635541 - Hypertension. 1995 Aug;26(2):315-20 – reference: 11588333 - Stroke. 2001 Oct;32(10 ):2403-8 – reference: 9216150 - IEEE Trans Biomed Eng. 1996 Aug;43(8):779-88 – reference: 7762016 - Stroke. 1995 Jun;26(6):1014-9 – reference: 2234328 - Neurosurgery. 1990 Sep;27(3):362-8 – reference: 9498848 - J Cereb Blood Flow Metab. 1998 Mar;18(3):311-8 – reference: 2201348 - Cerebrovasc Brain Metab Rev. 1990 Summer;2(2):161-92 – reference: 9303010 - Stroke. 1997 Sep;28(9):1686-92 – reference: 7143059 - J Neurosurg. 1982 Dec;57(6):769-74 – reference: 3986857 - Cardiovasc Res. 1985 Mar;19(3):139-45 – reference: 9458872 - Am J Physiol. 1998 Jan;274(1 Pt 2):H233-41 – reference: 18041584 - Cardiovasc Eng. 2008 Mar;8(1):42-59 – reference: 15297255 - Am J Physiol Heart Circ Physiol. 2004 Dec;287(6):H2510-7 – reference: 12843352 - Stroke. 2003 Aug;34(8):1881-5 – reference: 9747429 - Cardiovasc Res. 1998 Jun;38(3):605-16 |
SSID | ssj0004463 |
Score | 2.096048 |
Snippet | There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres... Abstract There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 553 |
SubjectTerms | Biological and medical sciences Blood Pressure Brain - blood supply Brain - physiology Calibration Cardiovascular system Cerebral autoregulation Cerebral blood flow Data loss Female Humans Investigative techniques, diagnostic techniques (general aspects) Linear Models Male Medical sciences Middle Aged Physiocal Radiology Signal Processing, Computer-Assisted Transfer function Ultrasonic investigative techniques Ultrasonography, Doppler, Transcranial |
Title | The effect of blood pressure calibrations and transcranial Doppler signal loss on transfer function estimates of cerebral autoregulation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1350453310002948 https://www.clinicalkey.es/playcontent/1-s2.0-S1350453310002948 https://dx.doi.org/10.1016/j.medengphy.2010.12.007 https://www.ncbi.nlm.nih.gov/pubmed/21239208 https://www.proquest.com/docview/867324072 https://www.proquest.com/docview/876239267 https://pubmed.ncbi.nlm.nih.gov/PMC4394242 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7tdiUeQgjKqzwqH7iGxnnYCbdVYVVAuxdYaW-W4zhLUUmqpr1y5mczkzjZDVQsEpdISTzxYyYzn-3xDMBrLsMol2mO09RIehHnxkPUajyZpNrksc2EoMPJp2dicR59vIgvDmDenYUht0qn-1ud3mhr92TmRnO2Xi5nn3kYIx4JmxXqII2SQzgKwlTEIzg6_vBpcXZ1PDJqEqpReY8IBm5eaHNseYldat28aGmQUsvuN1L31rrGoSvanBf7QOnvvpXXjNXJA7jvUCY7bjvyEA5sOYbb8y652xjuXotDOIZbp26H_RH8RLlhrZMHqwrW-LWzxll2t7EMW0XT60ZWmS5ztiVTZ_CCYszeVQhp7YaRTwjerrBrrCrbMgU-JxtKpIwie3wnkEtVGLuhzesV0xROwV66fGKP4fzk_Zf5wnPZGjyDE90tzkFFyHOhtc7i0MRFpGWi_dhGAhFSLLM8yKQlfBnlSWGS1CbIENQn2i8CG6OaeAKjsirtM2A4qRM2peBkfk7BLBHCJSYVMiysMDLjExAde5Rxocwpo8ZKdT5r31TPV0V8VTxQyNcJ-D3huo3mcTNJ0vFfdYdVUb0qtDg3k8p9pLZ2aqJWXNVYUv0hyhN421MO_oZ_q3Y6ENO-pwG5UiBUmQDr5Fah2NEOkS5ttatVgmPchMz7SxG0noipBVbztJX0q-9zeuNj6-XgH-gLUCjz4Zty-bUJaU7ns7F5z_-n3y_gTrvgT0tkL2G03ezsK0SM22wKh29-8KnTC78AUrlutA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTmJDCEFhUD6GH3iNmk874W0qTB1b-8Im7c1yHGcUlaRq2v-BP5u7xMkWqBgSL5WS-Go7d7n7nX2-A_jgiSDMRJKhmxoKJ_Q87SBq1Y6IE6WzyKSc0-Hk2ZxPr8Iv19H1HkzaszAUVml1f6PTa21t74zt2xyvFovxVy-IEI8E9Qq1n4TxA9gPI_T2BrB_cnY-nd8ejwzrgmrU3iGCXpgX2hxT3OCUmjAvWhqk0rK7jdTjlarw1eVNzYtdoPT32Mo7xur0KTyxKJOdNBN5BnumGMLBpC3uNoRHd_IQDuHhzO6wP4efKDesCfJgZc7quHZWB8tu14bhqMi9rmWVqSJjGzJ1Gn9QjNmnEiGtWTOKCcHLJU6NlUXTJsf7ZEOJlFFmjx8EcqkLbda0eb1kitIpmBtbT-wFXJ1-vpxMHVutwdHo6G7QB-WBl3GlVBoFOspDJWLlRibkiJAikWZ-KgzhyzCLcx0nJkaGoD5Rbu6bCNXEEQyKsjCvgKFTx01CycncjJJZIoSLdcJFkBuuReqNgLfskdqmMqeKGkvZxqx9lx1fJfFVer5Evo7A7QhXTTaP-0nilv-yPayK6lWixbmfVOwiNZVVE5X0ZIUt5R-iPIKPHWXva_i3bo97YtrN1KdQCoQqI2Ct3EoUO9ohUoUpt5WM8R3XKfP-0gStJ2Jqjt28bCT99v89euLi6EXvG-gaUCrz_pNi8a1OaU7ns3F4r_9n3u_hYHo5u5AXZ_PzN3DYLP7TctlbGGzWW_MO0eMmPbba4RcQpnCj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+blood+pressure+calibrations+and+transcranial+Doppler+signal+loss+on+transfer+function+estimates+of+cerebral+autoregulation&rft.jtitle=Medical+engineering+%26+physics&rft.au=Deegan%2C+Brian+M.&rft.au=Serrador%2C+Jorge+M.&rft.au=Nakagawa%2C+Kazuma&rft.au=Jones%2C+Edward&rft.date=2011-06-01&rft.issn=1350-4533&rft.volume=33&rft.issue=5&rft.spage=553&rft.epage=562&rft_id=info:doi/10.1016%2Fj.medengphy.2010.12.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_medengphy_2010_12_007 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453311X0005X%2Fcov150h.gif |