The effect of blood pressure calibrations and transcranial Doppler signal loss on transfer function estimates of cerebral autoregulation

There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism (“physiocal”) causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 33; no. 5; pp. 553 - 562
Main Authors Deegan, Brian M., Serrador, Jorge M., Nakagawa, Kazuma, Jones, Edward, Sorond, Farzaneh A., ÓLaighin, Gearóid
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.06.2011
Elsevier
Subjects
Online AccessGet full text
ISSN1350-4533
1873-4030
1873-4030
DOI10.1016/j.medengphy.2010.12.007

Cover

More Information
Summary:There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism (“physiocal”) causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We assessed the effects of “physiocals” and TCD signal loss on transfer function estimates in recordings of 45 healthy subjects. We added artificial “physiocals” and removed sections of TCD signal from 5 min Finapres and TCD recordings. We also compared transfer function results from 5 min time series with time series as short as 1 min. Accurate transfer function estimates can be achieved in the 0.03–0.07 Hz band using beat-by-beat data with linear interpolation, while data loss is less than 10 s. At frequencies between 0.07 and 0.5 Hz, transfer function estimates become unreliable with 5 s of data loss every 50 s. 2 s data loss only affects frequency bands above 0.15 Hz. Finally, accurate transfer function assessment of autoregulatory function can be achieved from time series as short as 1 min, although gain and coherence tend to be overestimated at higher frequencies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1350-4533
1873-4030
1873-4030
DOI:10.1016/j.medengphy.2010.12.007