Diminished Pupillary Light Reflex at High Irradiances in Melanopsin-Knockout Mice
In the mammalian retina, a small subset of retinal ganglion cells (RGCs) are intrinsically photosensitive, express the opsin-like protein melanopsin, and project to brain nuclei involved in non-image-forming visual functions such as pupillary light reflex and circadian photoentrainment. We report th...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 299; no. 5604; pp. 245 - 247 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Association for the Advancement of Science
10.01.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the mammalian retina, a small subset of retinal ganglion cells (RGCs) are intrinsically photosensitive, express the opsin-like protein melanopsin, and project to brain nuclei involved in non-image-forming visual functions such as pupillary light reflex and circadian photoentrainment. We report that in mice with the melanopsin gene ablated, RGCs retrograde-labeled from the supra-chiasmatic nuclei were no longer intrinsically photosensitive, although their number, morphology, and projections were unchanged. These animals showed a pupillary light reflex indistinguishable from that of the wild type at low irradiances, but at high irradiances the reflex was incomplete, a pattern that suggests that the melanopsin-associated system and the classical rod/cone system are complementary in function. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1077293 |