Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation

Insulin signaling in osteoblasts has been shown recently to contribute to whole-body glucose homeostasis in animals fed a normal diet; however, it is unknown whether bone contributes to the insulin resistance that develops in animals challenged by a high-fat diet (HFD). Here, we evaluated the conseq...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of clinical investigation Vol. 124; no. 4; pp. 1781 - 1793
Main Authors Wei, Jianwen, Ferron, Mathieu, Clarke, Christopher J., Hannun, Yusuf A., Jiang, Hongfeng, Blaner, William S., Karsenty, Gerard
Format Journal Article
LanguageEnglish
Published United States American Society for Clinical Investigation 01.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Insulin signaling in osteoblasts has been shown recently to contribute to whole-body glucose homeostasis in animals fed a normal diet; however, it is unknown whether bone contributes to the insulin resistance that develops in animals challenged by a high-fat diet (HFD). Here, we evaluated the consequences of osteoblast-specific overexpression of or loss of insulin receptor in HFD-fed mice. We determined that the severity of glucose intolerance and insulin resistance that mice develop when fed a HFD is in part a consequence of osteoblast-dependent insulin resistance. Insulin resistance in osteoblasts led to a decrease in circulating levels of the active form of osteocalcin, thereby decreasing insulin sensitivity in skeletal muscle. Insulin resistance developed in osteoblasts as the result of increased levels of free saturated fatty acids, which promote insulin receptor ubiquitination and subsequent degradation. Together, these results underscore the involvement of bone, among other tissues, in the disruption of whole-body glucose homeostasis resulting from a HFD and the involvement of insulin and osteocalcin cross-talk in glucose intolerance. Furthermore, our data indicate that insulin resistance develops in bone as the result of lipotoxicity-associated loss of insulin receptors.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9738
1558-8238
1558-8238
DOI:10.1172/JCI72323