Dexmedetomidine Reduces the Lidocaine-Induced Neurotoxicity by Inhibiting Inflammasome Activation and Reducing Pyroptosis in Rats

Local anesthetic toxicity is closely related to neuronal death and activation of the inflammatory response. Dexmedetomidine (Dex) is an adrenergic α2 receptor agonist that can reduce the neurotoxicity induced by lidocaine. It also has anti-inflammatory effects. However, the mechanism underlying the...

Full description

Saved in:
Bibliographic Details
Published inBiological & pharmaceutical bulletin Vol. 44; no. 7; pp. 902 - 909
Main Authors Ding, Xu-dong, Cao, Yan-yan, Li, Lu, Zhao, Guang-yi
Format Journal Article
LanguageEnglish
Published Japan The Pharmaceutical Society of Japan 01.07.2021
Pharmaceutical Society of Japan
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Local anesthetic toxicity is closely related to neuronal death and activation of the inflammatory response. Dexmedetomidine (Dex) is an adrenergic α2 receptor agonist that can reduce the neurotoxicity induced by lidocaine. It also has anti-inflammatory effects. However, the mechanism underlying the neuroprotective effects of Dex against lidocaine-induced toxicity remains to be defined. We hypothesized that Dex exerts its neural protective effect through inhibiting inflammasome activation and through anti-pyroptosis effects against local anesthetic-induced nerve injury. In a rat model of lidocaine-induced spinal cord injury, we studied the protective effect of Dex on lidocaine-induced changes in spinal cord function, inflammasome formation and pyroptosis, pro-inflammatory cytokine expression, and protein kinase C (PKC)-δ phosphorylation. Dex reduced lidocaine-induced neurotoxicity and inhibited PKC-δ phosphorylation in the spinal cord of rats. Furthermore, Dex inhibited pyroptosis and inflammasome formation (caspase-1, NLRP3, and apoptosis-associated speck-like protein (ASC)). Finally, Dex attenuated interleukin (IL)-1β and IL-18 expression, as well as microglia response. In conclusion, Dex can reduce the severity of lidocaine-induced spinal cord injury in rats by inhibiting priming and inflammasome activation and reducing pyroptosis via PKC-δ phosphorylation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0918-6158
1347-5215
1347-5215
DOI:10.1248/bpb.b20-00482