Mitochondrial control by DRP1 in brain tumor initiating cells

Glioblastomas contains stem-like tumor cells that display differential metabolic profiles. Here the authors show that brain tumor initiating cells contain fragmented mitochondria owing to activation of the key mediator of mitochondrial fission, DRP1, controlled by a competitive CDK5–CAMK2 axis. Targ...

Full description

Saved in:
Bibliographic Details
Published inNature neuroscience Vol. 18; no. 4; pp. 501 - 510
Main Authors Xie, Qi, Wu, Qiulian, Horbinski, Craig M, Flavahan, William A, Yang, Kailin, Zhou, Wenchao, Dombrowski, Stephen M, Huang, Zhi, Fang, Xiaoguang, Shi, Yu, Ferguson, Ashley N, Kashatus, David F, Bao, Shideng, Rich, Jeremy N
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.04.2015
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Glioblastomas contains stem-like tumor cells that display differential metabolic profiles. Here the authors show that brain tumor initiating cells contain fragmented mitochondria owing to activation of the key mediator of mitochondrial fission, DRP1, controlled by a competitive CDK5–CAMK2 axis. Targeting DRP1 activity attenuates growth of stem-like tumor cells, and activated DRP1 informs poor patient prognosis. Brain tumor initiating cells (BTICs) co-opt the neuronal high affinity glucose transporter, GLUT3, to withstand metabolic stress. We investigated another mechanism critical to brain metabolism, mitochondrial morphology, in BTICs. BTIC mitochondria were fragmented relative to non-BTIC tumor cell mitochondria, suggesting that BTICs increase mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), showed activating phosphorylation in BTICs and inhibitory phosphorylation in non-BTIC tumor cells. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and targeting AMPK rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca 2+ -calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTIC tumor cells, suggesting that tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlated with poor prognosis in glioblastoma, suggesting that mitochondrial dynamics may represent a therapeutic target for BTICs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1097-6256
1546-1726
DOI:10.1038/nn.3960