Connecting macroscopic observables and microscopic assembly events in amyloid formation using coarse grained simulations

The pre-fibrillar stages of amyloid formation have been implicated in cellular toxicity, but have proved to be challenging to study directly in experiments and simulations. Rational strategies to suppress the formation of toxic amyloid oligomers require a better understanding of the mechanisms by wh...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 8; no. 10; p. e1002692
Main Authors Bieler, Noah S, Knowles, Tuomas P J, Frenkel, Daan, Vácha, Robert
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.10.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The pre-fibrillar stages of amyloid formation have been implicated in cellular toxicity, but have proved to be challenging to study directly in experiments and simulations. Rational strategies to suppress the formation of toxic amyloid oligomers require a better understanding of the mechanisms by which they are generated. We report Dynamical Monte Carlo simulations that allow us to study the early stages of amyloid formation. We use a generic, coarse-grained model of an amyloidogenic peptide that has two internal states: the first one representing the soluble random coil structure and the second one the [Formula: see text]-sheet conformation. We find that this system exhibits a propensity towards fibrillar self-assembly following the formation of a critical nucleus. Our calculations establish connections between the early nucleation events and the kinetic information available in the later stages of the aggregation process that are commonly probed in experiments. We analyze the kinetic behaviour in our simulations within the framework of the theory of classical nucleated polymerisation, and are able to connect the structural events at the early stages in amyloid growth with the resulting macroscopic observables such as the effective nucleus size. Furthermore, the free-energy landscapes that emerge from these simulations allow us to identify pertinent properties of the monomeric state that could be targeted to suppress oligomer formation.
Bibliography:Conceived and designed the experiments: TPJK DF RV. Performed the experiments: NSB. Analyzed the data: NSB RV. Wrote the paper: NSB TPJK DF RV.
The authors have declared that no competing interests exist.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1002692