A structure-guided mutation in the major capsid protein retargets BK polyomavirus

Viruses within a family often vary in their cellular tropism and pathogenicity. In many cases, these variations are due to viruses switching their specificity from one cell surface receptor to another. The structural requirements that underlie such receptor switching are not well understood especial...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 9; no. 10; p. e1003688
Main Authors Neu, Ursula, Allen, Stacy-Ann A, Blaum, Bärbel S, Liu, Yan, Frank, Martin, Palma, Angelina S, Ströh, Luisa J, Feizi, Ten, Peters, Thomas, Atwood, Walter J, Stehle, Thilo
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.10.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Viruses within a family often vary in their cellular tropism and pathogenicity. In many cases, these variations are due to viruses switching their specificity from one cell surface receptor to another. The structural requirements that underlie such receptor switching are not well understood especially for carbohydrate-binding viruses, as methods capable of structure-specificity studies are only relatively recently being developed for carbohydrates. We have characterized the receptor specificity, structure and infectivity of the human polyomavirus BKPyV, the causative agent of polyomavirus-associated nephropathy, and uncover a molecular switch for binding different carbohydrate receptors. We show that the b-series gangliosides GD3, GD2, GD1b and GT1b all can serve as receptors for BKPyV. The crystal structure of the BKPyV capsid protein VP1 in complex with GD3 reveals contacts with two sialic acid moieties in the receptor, providing a basis for the observed specificity. Comparison with the structure of simian virus 40 (SV40) VP1 bound to ganglioside GM1 identifies the amino acid at position 68 as a determinant of specificity. Mutation of this residue from lysine in BKPyV to serine in SV40 switches the receptor specificity of BKPyV from GD3 to GM1 both in vitro and in cell culture. Our findings highlight the plasticity of viral receptor binding sites and form a template to retarget viruses to different receptors and cell types.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: UN SAA BSB YL MF ASP TF WJA TS. Performed the experiments: UN SAA BSB YL MF ASP LJS. Analyzed the data: UN SAA BSB YL MF ASP LJS TF TP WJA TS. Wrote the paper: UN SAA BSB YL MF ASP TF WJA TS.
Current address: National Institute of Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
The authors have declared that no competing interests exist. Dr. Martin Frank is employed by a company, Biognos AB in Gothenburg, Sweden. He declares that he does not have any financial, non-financial, professional or personal competing interests. His employment does not alter his and the other authors' adherence to all the PLOS PLoS Pathogens policies on sharing data and materials (as outlined in the guide for authors).
Current address: REQUIMTE, CQFB, Faculty of Science and Technology /UNL, Caparica, Portugal.
ISSN:1553-7374
1553-7366
1553-7374
DOI:10.1371/journal.ppat.1003688