anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells
We here demonstrate that the anti-diabetic drug metformin interacts synergistically with the anti-HER2 monoclonal antibody trastuzumab (Tzb; Herceptin™) to eliminate stem/progenitor cell populations in HER2-gene-amplified breast carcinoma cells. When using the mammosphere culture technique, graded c...
Saved in:
Published in | Breast cancer research and treatment Vol. 126; no. 2; pp. 355 - 364 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Boston
Boston : Springer US
01.04.2011
Springer US Springer Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We here demonstrate that the anti-diabetic drug metformin interacts synergistically with the anti-HER2 monoclonal antibody trastuzumab (Tzb; Herceptin™) to eliminate stem/progenitor cell populations in HER2-gene-amplified breast carcinoma cells. When using the mammosphere culture technique, graded concentrations of single-agent metformin (range 50-1,000 μmol/l) were found to dose-dependently reduce the number of mammospheres formed by SKBR3 (a Tzb-naïve model), SKBR3 TzbR (a model of acquired auto-resistance to Tzb) and JIMT-1 (a model of refractoriness to Tzb and other HER2-targeted therapies ab initio) HER2-overexpressing breast cancer cells. Single-agent Tzb likewise reduced mammosphere-forming efficiency (MSFE) in Tzb-naïve SKBR3 cells, but it failed to significantly decrease MSFE in Tzb-resistant SKBR3 TzbR and JIMT-1 cells. Of note, CD44-overexpressing Tzb-refractory SKBR3 TzbR and JIMT-1 cells retained an exquisite sensitivity to single-agent metformin. Concurrent combination of metformin with Tzb synergistically reduced MSFE as well as the size of mammospheres in Tzb-refractory SKBR3 TzbR and JIMT-1 cells. Flow cytometry analyses confirmed that metformin and Tzb functioned synergistically to down-regulate the percentage of Tzb-refractory JIMT-1 cells displaying the CD44pos/CD24neg/low stem/progenitor immunophenotype. Given that MSFE and mammosphere size are indicators of stem self-renewal and progenitor cell proliferation, respectively, our current findings reveal for the first time that: (a) Tzb refractoriness in HER2 overexpressors can be explained in terms of Tzb-resistant/CD44-overexpressing/tumor-initiating stem cells; (b) metformin synergistically interacts with Tzb to suppress self-renewal and proliferation of cancer stem/progenitor cells in HER2-positive carcinomas. |
---|---|
Bibliography: | http://dx.doi.org/10.1007/s10549-010-0924-x ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0167-6806 1573-7217 |
DOI: | 10.1007/s10549-010-0924-x |