Disproportionate Contributions of Select Genomic Compartments and Cell Types to Genetic Risk for Coronary Artery Disease

Large genome-wide association studies (GWAS) have identified many genetic loci associated with risk for myocardial infarction (MI) and coronary artery disease (CAD). Concurrently, efforts such as the National Institutes of Health (NIH) Roadmap Epigenomics Project and the Encyclopedia of DNA Elements...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 11; no. 10; p. e1005622
Main Authors Won, Hong-Hee, Natarajan, Pradeep, Dobbyn, Amanda, Jordan, Daniel M, Roussos, Panos, Lage, Kasper, Raychaudhuri, Soumya, Stahl, Eli, Do, Ron
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.10.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Large genome-wide association studies (GWAS) have identified many genetic loci associated with risk for myocardial infarction (MI) and coronary artery disease (CAD). Concurrently, efforts such as the National Institutes of Health (NIH) Roadmap Epigenomics Project and the Encyclopedia of DNA Elements (ENCODE) Consortium have provided unprecedented data on functional elements of the human genome. In the present study, we systematically investigate the biological link between genetic variants associated with this complex disease and their impacts on gene function. First, we examined the heritability of MI/CAD according to genomic compartments. We observed that single nucleotide polymorphisms (SNPs) residing within nearby regulatory regions show significant polygenicity and contribute between 59-71% of the heritability for MI/CAD. Second, we showed that the polygenicity and heritability explained by these SNPs are enriched in histone modification marks in specific cell types. Third, we found that a statistically higher number of 45 MI/CAD-associated SNPs that have been identified from large-scale GWAS studies reside within certain functional elements of the genome, particularly in active enhancer and promoter regions. Finally, we observed significant heterogeneity of this signal across cell types, with strong signals observed within adipose nuclei, as well as brain and spleen cell types. These results suggest that the genetic etiology of MI/CAD is largely explained by tissue-specific regulatory perturbation within the human genome.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: HHW PN ES RD. Analyzed the data: HHW PN ES RD. Contributed reagents/materials/analysis tools: HHW PN AD DMJ PR KL SR ES RD. Wrote the paper: HHW PN ES RD.
The authors have declared that no competing interests exist.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1005622