Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes

De novo mutations affect risk for many diseases and disorders, especially those with early-onset. An example is autism spectrum disorders (ASD). Four recent whole-exome sequencing (WES) studies of ASD families revealed a handful of novel risk genes, based on independent de novo loss-of-function (LoF...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 9; no. 8; p. e1003671
Main Authors He, Xin, Sanders, Stephan J, Liu, Li, De Rubeis, Silvia, Lim, Elaine T, Sutcliffe, James S, Schellenberg, Gerard D, Gibbs, Richard A, Daly, Mark J, Buxbaum, Joseph D, State, Matthew W, Devlin, Bernie, Roeder, Kathryn
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.08.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:De novo mutations affect risk for many diseases and disorders, especially those with early-onset. An example is autism spectrum disorders (ASD). Four recent whole-exome sequencing (WES) studies of ASD families revealed a handful of novel risk genes, based on independent de novo loss-of-function (LoF) mutations falling in the same gene, and found that de novo LoF mutations occurred at a twofold higher rate than expected by chance. However successful these studies were, they used only a small fraction of the data, excluding other types of de novo mutations and inherited rare variants. Moreover, such analyses cannot readily incorporate data from case-control studies. An important research challenge in gene discovery, therefore, is to develop statistical methods that accommodate a broader class of rare variation. We develop methods that can incorporate WES data regarding de novo mutations, inherited variants present, and variants identified within cases and controls. TADA, for Transmission And De novo Association, integrates these data by a gene-based likelihood model involving parameters for allele frequencies and gene-specific penetrances. Inference is based on a Hierarchical Bayes strategy that borrows information across all genes to infer parameters that would be difficult to estimate for individual genes. In addition to theoretical development we validated TADA using realistic simulations mimicking rare, large-effect mutations affecting risk for ASD and show it has dramatically better power than other common methods of analysis. Thus TADA's integration of various kinds of WES data can be a highly effective means of identifying novel risk genes. Indeed, application of TADA to WES data from subjects with ASD and their families, as well as from a study of ASD subjects and controls, revealed several novel and promising ASD candidate genes with strong statistical support.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: XH BD KR. Performed the experiments: XH SJS LL SDR. Analyzed the data: XH SJS LL KR. Contributed reagents/materials/analysis tools: XH SJS LL SDR ETL JSS GDS RAG MJD JDB MWS BD KR. Wrote the paper: XH SJS BD KR.
The authors have declared that no competing interests exist.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1003671