Hsp40s specify functions of Hsp104 and Hsp90 protein chaperone machines

Hsp100 family chaperones of microorganisms and plants cooperate with the Hsp70/Hsp40/NEF system to resolubilize and reactivate stress-denatured proteins. In yeast this machinery also promotes propagation of prions by fragmenting prion polymers. We previously showed the bacterial Hsp100 machinery coo...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 10; no. 10; p. e1004720
Main Authors Reidy, Michael, Sharma, Ruchika, Shastry, Shankar, Roberts, Brittany-Lee, Albino-Flores, Ivan, Wickner, Sue, Masison, Daniel C
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.10.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hsp100 family chaperones of microorganisms and plants cooperate with the Hsp70/Hsp40/NEF system to resolubilize and reactivate stress-denatured proteins. In yeast this machinery also promotes propagation of prions by fragmenting prion polymers. We previously showed the bacterial Hsp100 machinery cooperates with the yeast Hsp40 Ydj1 to support yeast thermotolerance and with the yeast Hsp40 Sis1 to propagate [PSI+] prions. Here we find these Hsp40s similarly directed specific activities of the yeast Hsp104-based machinery. By assessing the ability of Ydj1-Sis1 hybrid proteins to complement Ydj1 and Sis1 functions we show their C-terminal substrate-binding domains determined distinctions in these and other cellular functions of Ydj1 and Sis1. We find propagation of [URE3] prions was acutely sensitive to alterations in Sis1 activity, while that of [PIN+] prions was less sensitive than [URE3], but more sensitive than [PSI+]. These findings support the ideas that overexpressing Ydj1 cures [URE3] by competing with Sis1 for interaction with the Hsp104-based disaggregation machine, and that different prions rely differently on activity of this machinery, which can explain the various ways they respond to alterations in chaperone function.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address: Department of Biochemistry, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
Conceived and designed the experiments: MR RS SW DCM. Performed the experiments: MR RS BLR IAF SS DCM. Analyzed the data: MR RS BLR IAF SS SW DCM. Wrote the paper: MR SW DCM.
The authors have declared that no competing interests exist.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1004720