Pomc -expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits
Hypothalamic neuron circuits regulating energy balance are highly plastic and develop in response to nutrient and hormonal cues. To identify processes that might be susceptible to gestational influences in mice, we characterized the ontogeny of proopiomelanocortin (POMC) and neuropeptide Y (NPY) cel...
Saved in:
Published in | Nature medicine Vol. 16; no. 4; pp. 403 - 405 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.04.2010
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hypothalamic neuron circuits regulating energy balance are highly plastic and develop in response to nutrient and hormonal cues. To identify processes that might be susceptible to gestational influences in mice, we characterized the ontogeny of proopiomelanocortin (POMC) and neuropeptide Y (NPY) cell populations, which exert opposing influences on food intake and body weight. These analyses revealed that Pomc is broadly expressed in immature hypothalamic neurons and that half of embryonic Pomc-expressing precursors subsequently adopt a non-POMC fate in adult mice. Moreover, nearly one quarter of the mature NPY+ cell population shares a common progenitor with POMC+ cells. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1078-8956 1546-170X |
DOI: | 10.1038/nm.2126 |