A small molecule inhibitor of Nox2 and Nox4 improves contractile function after ischemia–reperfusion in the mouse heart

The NADPH oxidase enzymes Nox2 and 4, are important generators of Reactive oxygen species (ROS). These enzymes are abundantly expressed in cardiomyocytes and have been implicated in ischemia–reperfusion injury. Previous attempts with full inhibition of their activity using genetically modified anima...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; p. 11970
Main Authors Szekeres, Ferenc L. M., Walum, Erik, Wikström, Per, Arner, Anders
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.06.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The NADPH oxidase enzymes Nox2 and 4, are important generators of Reactive oxygen species (ROS). These enzymes are abundantly expressed in cardiomyocytes and have been implicated in ischemia–reperfusion injury. Previous attempts with full inhibition of their activity using genetically modified animals have shown variable results, suggesting that a selective and graded inhibition could be a more relevant approach. We have, using chemical library screening, identified a new compound (GLX481304) which inhibits Nox 2 and 4 (with IC 50 values of 1.25 µM) without general antioxidant effects or inhibitory effects on Nox 1. The compound inhibits ROS production in isolated mouse cardiomyocytes and improves cardiomyocyte contractility and contraction of whole retrogradely (Langendorff) perfused hearts after a global ischemia period. We conclude that a pharmacological and partial inhibition of ROS production by inhibition of Nox 2 and 4 is beneficial for recovery after ischemia reperfusion and might be a promising venue for treatment of ischemic injury to the heart.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-91575-8