Zika (PRVABC59) Infection Is Associated with T cell Infiltration and Neurodegeneration in CNS of Immunocompetent Neonatal C57Bl/6 Mice

The recent spread of Zika virus (ZIKV) and its association with increased rates of Guillain Barre and other neurological disorders as well as congenital defects that include microcephaly has created an urgent need to develop animal models to examine the pathogenesis of the disease and explore the ef...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 12; no. 11; p. e1006004
Main Authors Manangeeswaran, Mohanraj, Ireland, Derek D C, Verthelyi, Daniela
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.11.2016
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The recent spread of Zika virus (ZIKV) and its association with increased rates of Guillain Barre and other neurological disorders as well as congenital defects that include microcephaly has created an urgent need to develop animal models to examine the pathogenesis of the disease and explore the efficacy of potential therapeutics and vaccines. Recently developed infection models for ZIKV utilize mice defective in interferon responses. In this study we establish and characterize a new model of peripheral ZIKV infection using immunocompetent neonatal C57BL/6 mice and compare its clinical progression, virus distribution, immune response, and neuropathology with that of C57BL/6-IFNAR KO mice. We show that while ZIKV infected IFNAR KO mice develop bilateral hind limb paralysis and die 5-6 days post-infection (dpi), immunocompetent B6 WT mice develop signs of neurological disease including unsteady gait, kinetic tremors, severe ataxia and seizures by 13 dpi that subside gradually over 2 weeks. Immunohistochemistry show viral antigen predominantly in cerebellum at the peak of the disease in both models. However, whereas IFNAR KO mice showed infiltration by neutrophils and macrophages and higher expression of IL-1, IL-6 and Cox2, B6 WT mice show a cellular infiltration in the CNS composed predominantly of T cells, particularly CD8+ T cells, and increased mRNA expression levels of IFNg, GzmB and Prf1 at peak of disease. Lastly, the CNS of B6 WT mice shows evidence of neurodegeneration predominantly in the cerebellum that are less prominent in mice lacking the IFN response possibly due to the difference in cellular infiltrates and rapid progression of the disease in that model. The development of the B6 WT model of ZIKV infection will provide insight into the immunopathology of the virus and facilitate assessments of possible therapeutics and vaccines.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
Conceptualization: MM DDCI DV. Data curation: DV. Formal analysis: DV. Funding acquisition: DV. Investigation: MM DDCI. Methodology: MM DDCI DV. Project administration: DV. Resources: DV. Supervision: DV. Validation: DV. Visualization: MM DDCI DV. Writing – original draft: MM DDCI DV. Writing – review & editing: MM DDCI DV.
ISSN:1553-7374
1553-7366
1553-7374
DOI:10.1371/journal.ppat.1006004